2023年六年级下册数学教案推荐5篇

时间:2023-08-30 17:03:47 分类:工作报告

教案不仅是教学的指南,也是教师与学生互动的桥梁,教案不仅是教学的指南,也是我们备课过程中的重要参考资料,以下是小淘范文网小编精心为您推荐的2023年六年级下册数学教案推荐5篇,供大家参考。

2023年六年级下册数学教案推荐5篇

2023年六年级下册数学教案篇1

教学目标

1.使学生掌握分数、小数四则混合运算的运算顺序及计算方法,并能正确地进行计算。

2.训练学生认真审题,能够选择合理简便的解题方法。

3.培养学生良好的学习习惯及正确、合理、灵活、迅速的运算能力。

教学重点和难点

教学重点:掌握分数、小数四则混合运算的运算顺序,并且能根据不同的情况选用不同的方法进行计算。

教学难点:灵活、合理地运用不同的方法进行计算。

教学过程设计

(一)复习

1.第74页第1题。

(1)把下面的小数化成分数:

0.125 0.3 0.5 0.6 0.25 0.75

(2)把下面的分数化成小数:

以上各题用投影片出示,指名口答。

2.我们已经知道,分数、小数加减混合运算,可以根据已知数的具体情况来确定是先把分数化成小数,还是先把小数化成分数,从而进行计算。

下面各题用什么方法进行计算比较简单?

提问:分数、小数加减混合运算一般情况下化成什么数做比较简便?为什么?

提问:分数和小数乘、除混合运算在一般情况下,化成什么数做比较简便?为什么?(第三种方法最简便,但这种做法只有小数能够被分数的分母除尽时才最方便,一般情况下分数、小数乘除混合运算把小数化成分数来做比较简便。)

(二)学习新课

以上这些计算方法是我们进行分数、小数四则混合运算的基本方法。

(板书课题:分数、小数四则混合运算)

(1)小组讨论:这道题怎样计算比较简便?(把小数化成分数计算比较简便。)

(2)全体同学在练习本上试做,通过试做,体会一下为什么用这种方法进行计算简便?

(3)订正,并且说说这种做法有什么好处?(因为计算分数乘、除法时,有时可以先约分再计算比较简便,所以,分数、小数乘除混合运算一般先把小数化成分数后再计算。)

(1)审题:例5与例4有什么不同之处?

(例4是分数、小数乘、除混合运算,例5是分数,小数四则混合运算。)

(2)想一想,做这道题的时候,我们应该注意些什么?(a.运算顺序;b.选择合理恰当的方法。)

(3)小组讨论:这道题是把小数化成分数算简便,还是把分数化成小数算简便?(把小数化成分数计算比较简便。)

(4)全体同学在练习本上试做。

(5)订正。

(6)小结:我们把题目中的小数都化成了分数,这样在乘除过程中,有时可以先约分,使得做起来比较简便,同时得到的是一个准确的结果。

(7)如果计算的结果允许取近似值,也可以先把分数化成小数,取它们的近似值进行计算。在本册教材中,一般要求只取两位小数,这种算法在现在电子计算机越来越被广泛使用的社会里是很有价值的,因为,大多数电子计算机都是用小数来计算的。请你用这种方法试做这道题:

≈5.2÷3.2-1.67×0.7(注意:这一步用“≈”)

=1.625-1.169

=0.456

订正此题,并且教师要强调:如果计算的结果允许取近似值,才可以把分数化成小数来计算。

3.小结。

两位同组的同学互相说一说:

(1)分数、小数乘、除混合运算,怎样计算比较简便?

(2)分数、小数四则混合运算,又怎样计算简便?

看书质疑。

(三)巩固反馈

采用分小组巩固练习的形式。

1.用题板做练习,大面积反馈。

举题板订正,再把两种不同的计算方法进行比较:

不难看出,第二种方法更简便一些。所以解题方法不是一成不变的,还要根据题目的具体情况,如数的特征、运算符号等决定怎样做简便就怎样做,故在掌握了一般方法的基础上,还要灵活运用。

2.互相帮助:1,3,5组同学做题(1);2,4,6组同学做题(2)。之后,同桌同学交换检查,指出错误,加以改正,使学生掌握检查的方法,并养成检查的习惯。

教师出示正确答案,哪组的同学都做对了就给予表扬。

3.全体同学齐做。

把题中的分数化成小数后再计算。(保留两位小数。)

≈13×0.56-16.24÷3.5

=7.28-4.64

=2.64

(四)课堂总结

2023年六年级下册数学教案篇2

学情分析

了解了按比例分配的应用,将通过练习进一步巩固此类问题的解决方法。

学习目标

能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力。

导学策略

练习、反思、总结。

教学准备

小黑板

教师活动

学生活动

一、基本训练:

男女职工人数比是5∶4根据这句话你想到了什么?

二、按比例分配练习:

(一)一个乡共有拖拉机180台,其中大型拖拉机和手扶拖拉机台数的比是2∶7.这两种拖拉机各有多少台?

(二)建筑工人用2份水泥、3份沙子和5份石子配置一种混凝土.配置6000千克这种混凝土,需要水泥、沙子和石子各多少千克?

(三)一种药水是把药粉和水按照1∶100的比例配成的.要配成这种药水4040千克,需要药粉多少千克?

(四)用84厘米长的铁丝围成一个三角形,这个三角形三条边长度的'比是3∶4∶5.这个三角形三条边各是多少厘米?

1.还是按比例分配问题吗?

2.如果是四个数的连比你还会解答吗?

三、判断

一个长方形周长是20厘米,长与宽的比是7∶3,求长与宽各是多少厘米?

7+3=1020=14(厘米)20=6(厘米)【错,要分的不是20厘米】

四、思考:平均分是不是按比例分配的应用题?按照几比几分配的

五、课堂练习:《伴你成长》

2023年六年级下册数学教案篇3

目标:

1、 理解圆柱体积公式的推导过程,掌握计算公式。

2、 会运用公式计算圆柱的体积,提高学生知识迁移的能力。

3、 在公式推导中渗透转化的思想。

重点:

理解圆柱的体积公式的推导过程。

难点:

圆柱体积的计算。

用具:

课件、圆柱模型。

过程:

1、 教师提问。

(1)什么叫物体的体积?怎样求长方体的体积?

(2)圆的面积公式是什么?

(3)圆的面积公式是怎样推导的?

2、 教师:同学们,我们在研究圆的面积公式的推导时,是把它转化成我们学过的长方形来解决的,那么,圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课,我们就来研究这个问题。(板书:圆柱的体积)

1、 教学例5。

讲授圆柱体积公式的推导。(演示动画“圆柱的体积”)

(1)教师演示。

把圆柱的底面分成16个相等的扇形,再按照这些扇形的形状,沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。

(2)学生利用学具操作。

(3)启发学生思考、讨论:

①圆柱切开后可以拼成一个什么立体图形?(近似的长方体)

②通过刚才的实验你发现了什么?

a、拼成的这个近似长方体的立体图形和圆柱相比,体积大小没变,但形状变了。

b、拼成的这个近似长方体的立体图形和圆柱相比,底面的形状变了,由圆变成了近似长方形的立体图形,而底面的面积大小没有发生变化。

c、这个近似长方体的立体图形的高就是圆柱的高,高的长度没有变化。

(4)学生根据圆的面积公式的推导过程,进行猜想。

①如果把圆柱的底面平均分成32份,拼成的形状是怎样的?

②如果把圆柱的底面平均分成64份,拼成的形状是怎样的?

③如果把圆柱的底面平均分成128份,拼成的形状是怎样的?

(5)通过以上的观察,启发学生说出发现了什么。

①平均分的份数越多,拼起来的形状越接近长方体。

②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体图形的形状就越接近长方体。

(6)推导圆柱的体积公式。

①学生分组讨论:圆柱的体积怎样计算?

②学生汇报讨论结果,并说明理由。

教师:因为长方体的体积等于底面积乘高,(板书:长方体的体积=底面积×高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积)近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高。(板书:圆柱的体积=底面积×高)

③用字母表示圆柱的体积公式。(板书:v=sh)

2、 教学例6。

出示教材第26页例6。

(1)学生读题,理解题意。

(2)教师:要知道能否装下这袋奶,首先要计算出什么?

学生:杯子的容积。

(3)指明要计算杯子的容积,学生在练习本上完成。

杯子的底面积:3.14×(8÷2)2=50、24(cm2)

杯子的容积:50、24×10=502、4(ml)

答:因为502、4大于498,所以杯子能装下这袋牛奶。

3、 教学例7。

师:看下面的问题你能解答吗?遇到了什么问题?有什么办法吗?(课件出示:教材第27页例7)

生1:这个瓶子不是一个完整的圆柱,无法直接计算容积。

生2:我们可以先转化成圆柱,再计算瓶子的容积。

师:怎样转化呢?说说你的想法。

学生可能会说:

瓶子里的水的体积始终是不变的,即使瓶子倒置后,水的体积与原来还是一样的,这样就说明瓶子的容积其实就是水的体积加上18cm高的圆柱的体积。

也就是把瓶子的容积转化成了两个圆柱的体积。

……

师:尝试自己解答一下。

学生尝试解答;教师巡视了解情况。

组织学生交流汇报:

瓶子的容积=3.14×(8÷2)2×7+3.14×(8÷2)2×18

3.14×(8÷2)2×7+3.14×(8÷2)2×18

=3.14×16×(7+18)

=3.14×16×25

=1256(cm3)

=1256(ml)

答:这个瓶子的容积是1256ml。

只要学生解答正确就要给予肯定,不强求算法一致。

?设计意图:让学生联系实际,灵活地运用圆柱体积的计算方法解决实际问题,使学生体会到在生活中,数学知识应用的广泛性】

师:在本节课的学习中,你有哪些收获?

学生可能会说:

利用“转化”可以帮助我们解决问题。

我们利用了体积不变的特性,把不规则图形转化成规则图形来进行体积的计算。

在五年级时,计算梨的体积也是用了转化的方法。

……

?设计意图:既帮助学生梳理了所学知识,又及时总结了学习方法,渗透了数学思想】

圆柱的体积

长方体的体积=底面积×高

↓ ↓ ↓

圆柱的体积=底面积×高

v=

a类

1、填表。

底面积s(平方米) 高h(米) 圆柱的体积v(立方米)

15 3

6.4 4

2、一个圆柱形水池,底面半径是10米,深1.5米。这个水池的占地面积是多少平方米?水池的容积是多少立方米?

(考查知识点:圆柱的体积;能力要求:掌握圆柱体积的计算方法)

b类

两个底面积相等的圆柱,一个圆柱的高为9分米,体积为162立方分米。另一个圆柱的高为3分米,体积是多少立方分米?

(考查知识点:圆柱的体积;能力要求:能运用圆柱体积计算的方法解决简单的问题)

课堂作业新设计

a类:

1、 45 25.6

2、 314平方米 471立方米

b类:

54立方分米

教材习题

第25页“做一做”

1、 75×90=6750(cm3)

2、 3.14×(1÷2)2×10=7.85(m3)

第26页“做一做”

1、 3.14×(8÷2)2×15=753.6(cm3) 753.6cm3=0.7356l 0.75361 不够。

2、 3.14×(0.4÷2)2×5÷0.02≈31(张)

第27页“做一做”

3.14×(6÷2)2×10=282.6(cm3) 282.6cm3=282.6ml

第28页“练习五”

1、 3.14×52×2=157(cm3)

3.14×(4÷2)2×12=150.72(cm3)

3.14×(8÷2)2×8=401.92(cm3)

2、 3.14×(60÷2)2×90=254340(cm3) 254340cm3=254340ml

3、 3.14×(3÷2)2×0.5×2=7.065(m3)

4、 80÷16=5(cm)

5、 3.14×1.52×2×750=10597.5(千克) 10597.5千克=10.5975吨

6、 表面积:3.14×6×12+3.14×(6÷2)2×2=282.6(cm2)

体积:3.14×(6÷2)2×12=339.12(cm3)

表面积20×10+20×15+15×10)×2=1300(cm2) 体积:20×10×15=3000(cm3)

表面积:3.14×14×5+3.14×(14÷2)2×2=527.52(cm2)

体积:3.14×(14÷2)2×5=769.3(cm3)

7、 25cm=0.25m 35—3.14×(2÷2)2×0.25=34.215(立方米)

8、 3.14×(6÷2)2×11×(2+1)=932.58(cm3) 932.58cm3=932.58ml

932、58800 不够

9、 81÷4.5×3=54(dm3)

10、 3.14×(10÷2)2×2=157(cm3)

11、 3.14×(1.2÷2)2×20×50=1130.4(cm3) 1130.4cm3=1.1304l 1.13041 能装满。

12、 3.14×(10÷2)2×80—3.14×(8÷2)2×80=2260.8(cm3)

13、 30×10×4÷6=200(cm3)=200(ml)

14、 3.14×102×20=6280(cm3) 3.14×202×10=12560(cm3)

15、 第四个圆柱的体积最小;第一个圆柱的体积最大。

发现:同样一张长方形纸可以围成两个不同的圆柱,且以长边为圆柱的底面周长时围成圆柱的体积最大。

2023年六年级下册数学教案篇4

教学内容:

成数(课本第9页例2)

教学目标:

1、结合具体事物,经历认识成数,解答有关成数的实际问题的过程。。

2、对成数问题有好奇心,获得运用已有知识解决问题的成功体验。

教学重点:

理解成数的意义。

教学难点:

解决解答有关成数的实际问题。

教学过程:

一、复习

1、填空

①四折是十分之( ),改写成百分数是( )。

②六折是十分之( ),改写成百分数是( )。

③七五折是十分之( ),改写成百分数是( )。

2、商店里花了56元钱买了一条牛仔裤,因为那儿的牛仔裤正在打七折销售,这条牛仔裤原价多少元?

二、创设情境,导入新课

同学们有听农民们说:今年我家的稻谷比去年增产二成,我家的桂皮晒干后只有五成等吗?他们说的是什么意思呢?原来商业上与百分数有关的术语是折扣,而农业上与百分数有关的术语就是成数。渗透环保教育

三、探究体验

(一)成数表示一个数是另一个数的十分之几,通称几成。例如一成就是十分之一,改写成百分数就是10%。

1、让学生尝试把二成及三成五改写成百分数。

2、让学生说说除了农业上使用成数,还有哪些行业是使用了成数的知识。

3、练习:将下列成数改写成百分数。

二成=( )%; 四成五=( )%; 七成二=( )%。

(二)教学例2

1、出示例题,某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?

2、让学生读题,分析题意,今年比去年节电二成五怎么理解?是以哪个量为单位1?

3、学生尝试独立分析问题,解决问题,教师巡堂了解情况,指导个别学习有困难的学生。

4、理解节电二成五就是比去年节省了百分之二十五的意思。从而根据求一个数的百分之几是多少的解法列出算式和解答。

350(1-25%)=262.5(万千瓦时)

或者引导学生列出

350-35025%=262.5(万千瓦时)

四、巩固练习

1、三成=( )%; 五成六=( )%; 八成三=( )%;

2、第9页做一做

3、解决问题

(1)某乡去年的水稻产量是1500吨,今年因为受到天气灾害的影响水稻产量只有去年的八成五,今年的水稻产量是多少吨?

(2)鼎湖山20xx年累计旅游人次是18万人次,20xx年累计旅游人次比20xx年增加一成五,20xx年累计旅游人次是多少?(出外玩要做好垃圾分类)

(3)我校20xx年的在校生人数有820人,比20xx年在校生人数减少了二成,我校20xx年的在校生人数是多少?

(4)某鞋厂20xx年的年产量为30万双,20xx年年产量比20xx年增加了一成六,20xx年年产量又比20xx年增加一成,这个鞋厂20xx年的年产量是多少万双?

五、课堂总结

这节课你收获了什么?

2023年六年级下册数学教案篇5

教学内容:

比例尺(课本48-49页例1,“做一做”,练习八第1、2、3题)

教学目标:

1、理解比例尺的意义,能正确说明比例尺所表示的具体意义。

2、认识数值比例尺和线段比例尺,能将二者进行互化。

3、会求一幅图的比例尺。

教学重点:

比例尺的意义。

教学难点:

将线段比例尺改写成数值比例尺。

教具准备:

多媒体课件或小黑板

教学方法:

先学后教,当堂训练,目标教学法和小组合作学习融合

学习过程:

一、板书课题

同学们,今天我们来学习“比例尺”(板书课题)一起来看学习目标。

二、出示学习目标

本节课我们的目标是

1、理解比例尺的意义,能正确说明比例尺所表示的具体意义。

2、认识数值比例尺和线段比例尺,能将二者进行互化。

3、会求一幅图的比例尺。

同学们,有信心完成本节课的学习目标吗?为了能更好的完成学习目标,请看学习指导。

三、自研共探

1、看一看(自学探究)

认真看课本第48和第49页的内容,看图,看文字,重点看各色方框里的内容并思考

(1)什么是比例尺?求比例尺的方法是什么?

(2)看课本48页右图下面的线段比例尺,想:怎样把它转化成数值比例尺?

(3)比例尺一般写成什么形式?

师:生认真看书自学,师巡视,督促人人认真看书。

2、议一议(合作交流)

主要交流自学探究中的问题,先对子之间互说,最后小组内交流,统一答案或记录下没有解决的问题,以备下一步的展示。

3、说一说(汇报展示)

以小组为单位进行自学成果的汇报。针对自学探究中的问题,可以口答、板演、或提出问题。组间可以补充或质疑,教师尽可能的引导或解疑。

4、小结归纳

图上距离和实际距离的比叫做比例尺。

图上距离︰实际距离=比例尺

比例尺实际距离

图上距离

求比例尺时,需要注意单位的统一,同时,比例尺是一个比,不能带单位名称。为了计算方便,通常把比例尺写成前项或后项是1的比。

师:通过刚才的展示,老师发现各个小组的自学效果的确很好。到底同学们运用知识解决实际问题的能力怎么样呢?下面请看检测题,比一比谁发言最积极,谁解决问题的能力最强!

四、巩固提升

要求

1、独立完成,对子讨论。

学法指导:先自己独立完成题目,然后举手示意对子,待对子完成后小声讨论。

2、组内交流,整合答案。

学法指导:待组内成员全部完成后交流各自答案和理由,最终形成统一答案。

3、分工合作,板演展示。

学法指导:由组长分工:板演、检查、预展(讲解者)

4、汇报讲解,补充评价。

学法指导:各个小组按抽签顺序讲解展示,讲解时可以组内补充,也可其他组补充或质疑。展示后,其他组或教师给予评价。

操作指导:教师在预展时巡视各小组,指导并帮助小组快速分工,让每个学生尽快参与其中,没有得到展示机会的小组安排课后自改或小组对改。

五、全课总结

同学们,今天我们学习了比例尺,求比例尺的方法是什么呢?

首先根据比例尺的意义确定比的前项和后项,写出比,图上距离和实际距离位置不要写错;接着把两项化成相同的单位;最后化简比,变成前项或后项是1的比。

下面我们就用今天所学的知识来做作业,比谁的课堂作业做得又对又快,字体又工整。

六、当堂训练

1、必做题:课本练习八的1、2、3题

2、选做题:一张精密仪器图纸,用8厘米的线段表示实际的8毫米长,则这幅图的比例尺是多少?

3、拓展题:在一幅比例尺是1︰2000000的地图上,量得甲乙两地相距8厘米。如果在比例尺是1︰8000000的地图上,这两地相距多少厘米?

板书设计:

比例尺

图上距离和实际距离的比叫做比例尺。

图上距离︰实际距离=比例尺

比例尺实际距离

图上距离

《2023年六年级下册数学教案推荐5篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关文章

最新文章

分类

关闭