必修2数学教案6篇

时间:2025-03-16 11:41:14 分类:工作报告

教案的是优化教学效果的重要手段,我们要认真对待,制定教案时,必须考虑学生的实际接受能力,以确保教学内容的可行性,以下是小淘范文网小编精心为您推荐的必修2数学教案6篇,供大家参考。

必修2数学教案6篇

必修2数学教案篇1

教学目标:

1·进一步理解对数函数的性质,能运用对数函数的相关性质解决对数型函数的常见问题·

2·培养学生数形结合的思想,以及分析推理的能力·

教学重点:

对数函数性质的应用·

教学难点:

对数函数的性质向对数型函数的演变延伸·

教学过程:

一、问题情境

1·复习对数函数的性质·

2·回答下列问题·

(1)函数y=log2x的值域是;

(2)函数y=log2x(x≥1)的值域是;

(3)函数y=log2x(0

3·情境问题·

函数y=log2(x2+2x+2)的定义域和值域分别如何求呢?

二、学生活动

探究完成情境问题·

三、数学运用

例1求函数y=log2(x2+2x+2)的定义域和值域·

练习:

(1)已知函数y=log2x的值域是[—2,3],则x的范围是·

(2)函数,x(0,8]的值域是·

(3)函数y=log(x2—6x+17)的`值域·

(4)函数的值域是·

例2判断下列函数的奇偶性:

(1)f(x)=lg(2)f(x)=ln(—x)

例3已知loga 0·75>1,试求实数a取值范围·

例4已知函数y=loga(1—ax)(a>0,a≠1)·

(1)求函数的定义域与值域;

(2)求函数的单调区间·

练习:

1·下列函数(1)y=x—1;(2)y=log2(x—1);(3)y=;(4)y=lnx,其中值域为r的有(请写出所有正确结论的序号)·

2·函数y=lg(—1)的图象关于对称·

3·已知函数(a>0,a≠1)的图象关于原点对称,那么实数m= ·

4·求函数,其中x [,9]的值域·

四、要点归纳与方法小结

(1)借助于对数函数的性质研究对数型函数的定义域与值域;

(2)换元法;

(3)能画出较复杂函数的图象,根据图象研究函数的性质(数形结合)·

五、作业

课本p70~71—4,5,10,11·

必修2数学教案篇2

一、教学目标:

1、知识与技能目标

①理解循环结构,能识别和理解简单的框图的功能。

②能运用循环结构设计程序框图解决简单的问题。

2、过程与方法目标

通过模仿、操作、探索,学习设计程序框图表达,解决问题的过程,发展有条理的思考与表达的能力,提高逻辑思维能力。

3、情感、态度与价值观目标

通过本节的自主性学习,让学生感受和体会算法思想在解决具体问题中的意义,增强学生的创新能力和应用数学的意识。三、教法分析

二、教学重点、难点

重点:理解循环结构,能识别和画出简单的循环结构框图,

难点:循环结构中循环条件和循环体的确定。

三、教法、学法

本节课我遵循引导发现,循序渐进的思路,采用问题探究式教学。运用多媒体,投影仪辅助。倡导“自主、合作、探究”的学习方式。

四、 教学过程:

(一)创设情境,温故求新

引例:写出求 的值的一个算法,并用框图表示你的算法。

此例由学生动手完成,投影展示学生的做法,师生共同点评。鼓励学生一题多解——求创。

设计引例的目的是复习顺序结构,提出递推求和的方法,导入新课。此环节旨在提升学生的求知欲、探索欲,使学生保持良好、积极的情感体验。

(二)讲授新课

1、循序渐进,理解知识

?1】选择“累加器”作为载体,借助“累加器”使学生经历把“递推求和”转化为“循环求和”的过程,同时经历初始化变量,确定循环体,设置循环终止条件3个构造循环结构的关键步骤。

(1)将“递推求和”转化为“循环求和”的缘由及转化的方法和途径

引例“求 的值”这个问题的自然求和过程可以表示为:

用递推公式表示为:

直接利用这个递推公式构造算法在步骤 中使用了 共100个变量,计算机执行这样的算法时需要占用较大的内存。为了节省变量,充分体现计算机能以极快的速度进行重复计算的优势,需要从上述递推求和的步骤 中提取出共同的结构,即第n步的结果=第(n-1)步的结果+n。若引进一个变量 来表示每一步的计算结果,则第n步可以表示为赋值过程 。

(2)“ ”的含义

利用多媒体动画展示计算机中累加器的工作原理,借助形象直观对知识点进行强调说明① 的作用是将赋值号右边表达式 的值赋给赋值号左边的变量 。

②赋值号“=”右边的变量“ ”表示前一步累加所得的和,赋值号“=”左边的“ ”表示该步累加所得的和,含义不同。

③赋值号“=”与数学中的等号意义不同。 在数学中是不成立的。

借助“累加器”既突破了难点,同时也使学生理解了 中 的变化和 的含义。

(3)初始化变量,设置循环终止条件

由 的初始值为0, 的值由1增加到100,可以初始化循环变量和设置循环终止条件。

?2】循环结构的概念

根据指定条件决定是否重复执行一条或多条指令的控制结构称为循环结构。

教师学生一起共同完成引例的框图表示,并由此引出本节课的重点知识循环结构的概念。这样讲解既突出了重点又突破了难点,同时使学生体会了问题的抽象过程和算法的构建过程。还体现了我们研究问题常用的“由特殊到一般”的思维方式。

2、类比探究,掌握知识

例1:改造引例的程序框图表示①求 的值

②求 的值

③求 的值

④求 的值

此例可由学生独立思考、回答,师生共同点评完成。

通过对引例框图的反复改造逐步帮助学生深入理解循环结构,体会用循环结构表达算法,关键要做好三点:①确定循环变量和初始值②确定循环体③确定循环终止条件。

必修2数学教案篇3

教学准备

教学目标

进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式。

教学重难点

教学重点:熟练运用定理。

教学难点:应用正、余弦定理进行边角关系的相互转化。

教学过程

一、复习准备:

1、 写出正弦定理、余弦定理及推论等公式。

2、 讨论各公式所求解的三角形类型。

二、讲授新课:

1、 教学三角形的解的讨论:

① 出示例1:在△abc中,已知下列条件,解三角形。

分两组练习→ 讨论:解的个数情况为何会发生变化?

②用如下图示分析解的情况。 (a为锐角时)

② 练习:在△abc中,已知下列条件,判断三角形的解的情况。

2、 教学正弦定理与余弦定理的活用:

① 出示例2:在△abc中,已知sina∶sinb∶sinc=6∶5∶4,求最大角的余弦。

分析:已知条件可以如何转化?→ 引入参数k,设三边后利用余弦定理求角。

② 出示例3:在Δabc中,已知a=7,b=10,c=6,判断三角形的类型。

分析:由三角形的什么知识可以判别? → 求最大角余弦,由符号进行判断

③ 出示例4:已知△abc中,试判断△abc的形状。

分析:如何将边角关系中的边化为角? →再思考:又如何将角化为边?

3、 小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化。

三、巩固练习:

3、 作业:教材p11 b组1、2题。

必修2数学教案篇4

一、教学背景分析

1.教学内容分析

本节课是高中数学(北师大版必修5)第一章第3节第二课时,是“等差数列的前n项和”与“等比数列”内容的延续,与函数等知识有着密切的联系,也为以后学数列的求和,数学归纳法等做好铺垫。而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养,如在“分期付款”等实际问题中也经常涉及到。本节以数学文化背境引入课题有助于提升学生的创新思维和探索精神,是提高数学文化素养和培养学生应用意识的良好载体。

2.学情分析

从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是,本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。教学对象是高二理科班的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不完全。

二.教学目标

依据新课程标准及教材内容,结合学生的认知发展水平和心理特点,确定本节课的教学目标如下:

1.知识与技能目标: 理解等比数列前n项和公式推导方法;掌握等比数列前n项和公式并能运用公式解决一些简单问题。

2.过程与方法目标:感悟并理解公式的推导过程,感受公式探求过程所蕴涵的从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质,初步提高学生的建模意识和探究、分析与解决问题的能力。

3.情感与态度目标:通过经历对公式的探索过程,对学生进行思维严谨性的训练,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美和数学的严谨美。

三.重点,难点

教学重点:等比数列前“等比数列的前n项和”项和公式的推导及其简单应用。

教学难点:公式的推导思想方法及公式应用中q与1的关系。

四.教学方法

启发引导,探索发现,类比。

五. 教学过程

(一)借助数学文化背境提出问题

在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?

?设计意图】:设计这个数学文化背境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性。故事内容也紧扣本节课的主题与重点。

问题1:同学们,你们知道西萨要的是多少粒小麦吗?

引导学生写出麦粒总数“等比数列的前n项和”

(二)师生互动,探究问题

问题2:“等比数列的前n项和”

有些学生会说用计算器来求(老师当然肯定这种做法,但学生很快发现比较难求。)

问题3:同学们,我们来分析一下这个和式有什么特征?

(学生会发现,后一项都是前一项的2倍)

问题4:如果我们把(1)式每一项都乘以2,就变成了它的后一项,那么我们若在此等式两边同以2,得到(2)式:

“等比数列的前n项和”

比较(1)(2)两式,你有什么发现?(学生经过比较发现:(1)、(2)两式有许多相同的项)

问题5:将两式相减,相同的项就消去了,得到什么呢?。(学生会发现:“等比数列的前n项和”

?设计意图】:这五个问题层层深入,剖析了错位相减法中减的妙用,使学生容易接受为什么要错位相减,经过繁难的计算之后,突然发现上述解法,也让学生感受到这种方法的神奇。

问题6:老师指出这就是错位相减法,并要求学生纵观全过程,反思为什么(1)式两边要同乘以2呢?

?设计意图】:经过繁难的计算之苦后,突然发现上述解法,让学生对错位相减法有一个深刻的认识,也为探究等比数列求和公式的推导做好铺垫。

(三)类比联想,构建新知

这时我再顺势引导学生将结论一般化。

问题7:如何求等比数列“等比数列的前n项和”的前“等比数列的前n项和”项和“等比数列的前n项和”:

即:“等比数列的前n项和”

(学生相互合作,讨论交流,老师巡视课堂,并请学生上台板演。)

注:学生已有上面问题的处理经验,肯定有不少学生会想到“错位相减法”,教师可放手让学生探究。

将“等比数列的前n项和”两边同时乘以公比“等比数列的前n项和”后会得到“等比数列的前n项和”,两个等式相减后,哪些项被消去,还剩下哪些项,剩下项的符号有没有改变?这些都是用错位相减法求等比数列前“等比数列的前n项和”项和的关键所在,让学生先思考,再讨论,最后师在突出强调,加深印象。

两式作差得到“等比数列的前n项和”时,肯定会有学生直接得到“等比数列的前n项和”,不忙揭露错误,后面再反馈这个易错点,从而掌握公式的本质。

?设计意图】:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的成就感。增强学习数学的兴趣和学好数学的信心。

问题8:由 “等比数列的前n项和” 得 “等比数列的前n项和”对不对呢?这里的“等比数列的前n项和”能不能等于1呀?等比数列中的公比能不能为1?那么“等比数列的前n项和”时是什么数列?此时“等比数列的前n项和”?你能归纳出等比数列的前n项和公式吗? (这里引导学生对“等比数列的前n项和” 进行分类讨论,得出公式,同时为后面的例题教学打下基础。)

再次追问:结合等比数列的通项公式“等比数列的前n项和” ,如何把“等比数列的前n项和” 用“等比数列的前n项和” 、“等比数列的前n项和” 、“等比数列的前n项和” 表示出来?(引导学生得出公式的另一形式)

公式:

“等比数列的前n项和”

注:公式的理解

知三求二:n q a1 an sn ;

n的含义:项数(通项公式是qn-1);

q的含义:公比(注意q=1,分类讨论);

错位相减法:乘公比(作用是构造许多相同项)后错开一项后再减。

?设计意图】:通过反问学生归纳,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力。这一环节非常重要,尽管仅仅几句话,然而却有画龙点睛之妙用。

(四)讨论交流,延伸拓展

问题9: 探究等比数列前n项和公式,还有其它方法吗?

“等比数列的前n项和”(学生讨论交流,老师指导。依学生的认知水平可能会有以下几种方法)

(1)错位相减法

“等比数列的前n项和”(2)提出公比q

“等比数列的前n项和”(3)累加法

?设计意图】:以疑导思,激发学生的探索欲望,营造一个让学生主动观察、思考、讨论的氛围. 这有非常重要的研究价值,是研究性学习和课外拓展的极佳资源,它源于课本,又高于课本,对学生的思维发展有促进作用.

(五) 应用公式,深化理解

例1:在等比数列{ an }中,

(1)已知a1=3,q=2,n=6,求sn;

(2)已知a1=8,q=1/2,an =1/2,求sn;

(3)已知a1=-1.5,a4=96,求q与s4;

(4)已知a1=2,s3=26,求q与a3。

?设计意图】:初步应用公式,理解等比数列的基本量也可“知三求二”,体会方程思想。

例2:等比数列{ an }中,已知a3=3/2,s3=9/2,求a1与q。

?设计意图】:注意公式中的分类讨论思想。

例3:求数列{n+ }的前n项和。

?设计意图】:将未知问题转化为已知问题,进一步体会等比数列前n项和公式的应用。

练习1:求等比数列“等比数列的前n项和”前8项和;

练习2:a3= ,s9= ,求a1和q;

练习3:求数列{n+an}的前n项和。

(先由学生独立求解,然后抽学生板演,教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予适时的表扬。)

?设计意图】:通过练习,深化认识,增加思维的梯度的同时,提高学生的模式识别能力,渗透转化思想.

(六)总结归纳,加深理解

问题10:这节课你有什么收获?学到了哪些知识和方法?

?设计意图】:以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法等方面总结。以此培养学生的口头表达能力,归纳概括能力。

(学生小结归纳,不足之处老师补充说明。)

1.公式:等比数列前n项和

当q≠1时,sn= =

当q=1时, sn=na1

2.方法:错位相减法(乘以公比)

3.思想:分类讨论(公式选择)

(七)故事结束,首尾呼应

最后我们回到故事中的问题,可以计算出国王奖赏的小麦约为1.84×1019粒,大约7000亿吨,用这么多小麦能从地球到太阳铺设一条宽10米、厚8米的大道,大约是全世界一年粮食产量的459倍,显然国王兑现不了他的承诺了。

?设计意图】:把引入课题时的悬念给予释疑,有助于学生克服疲倦、继续积极思维。

(八)课后作业,分层练习

(1)阅读本节内容,预习下一节内容;

(2) 书面作业:习题p30 8 .10;

(3)拓展作业:求和:“等比数列的前n项和”

?设计意图】:出选作题的目的是注意分层教学和因材施教,让学有余力的学生有思考的空间。

必修2数学教案篇5

一、教学内容分析

圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象、恰当地利用xx解题,许多时候能以简驭繁。因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

二、学生学习情况分析

我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

三、设计思想

由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情、在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率、

四、教学目标

1、深刻理解并熟练掌握圆锥曲线的定义,能灵活应用xx解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

2、通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

3、借助多媒体辅助教学,激发学习数学的兴趣、

五、教学重点与难点:

教学重点

1、对圆锥曲线定义的理解

2、利用圆锥曲线的定义求“最值”

3、“定义法”求轨迹方程

教学难点:

巧用圆锥曲线xx解题

六、教学过程设计

【设计思路】

开门见山,提出问题

例题:

(1)已知a(-2,0),b(2,0)动点m满足|ma|+|mb|=2,则点m的轨迹是()。

(a)椭圆(b)双曲线(c)线段(d)不存在

(2)已知动点m(x,y)满足(x1)2(y2)2|3x4y|,则点m的轨迹是()。

(a)椭圆(b)双曲线(c)抛物线(d)两条相交直线

【设计意图】

定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。

【学情预设】

估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折——如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)2这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。

在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是,实轴长为,焦距为。以深化对概念的理解。

必修2数学教案篇6

一、教学内容分析

教材地位:幂函数是中学教材中的一个基本内容,即是对正比例函数、反比例函数、二次函数的系统总结,也是对这些函数的概况和一般化、

教学重点:幂函数的图像与性质、

教学难点:以幂函数为背景的图像变换、

二、教学目标设计

能描绘常见幂函数的图像,掌握幂函数的基本性质;理解幂函数图像的演进及单调性质;理解幂函数图形特征与代数特征的对称联系,在函数性质的应用中体会它的价值。能以幂函数为背景进行基本的函数图像的平移和对称变换、

三、教学流程设计

设置情境→探索研究→总结提炼→尝试应用→练习回馈→设置评价

五、教学过程设计

1、情境设置

指导学生描画一些典型的幂函数的图像,回忆并归纳幂函数的性质、

2、探索研究

问题:如图所示的分别是幂函数①,②,③,④,⑤,⑥,⑦在坐标系中第一象限内的图像,请尽可能精确地将指数的范围分别确定出来

3、总结提炼

揭示幂函数图像特征与底数的依赖关系、师生共同整理出规律性结论、

4、尝试应用

①(1)研究函数的图像之间的关系;

(2)在同一坐标中作上述函数的图像;

(3)由所作函数的图像判断最后一个函数的奇偶性、单调性、

②已知函数

(1)试求该函数的零点,并作出图像;

(2)是否存在自然数,使=1000,若存在,求出;若不存在,请说明理由、

③作函数的大致图像、

5、练习回馈

课本第83页练习4、1(2)

六、教学评价设计

习题4、1——

b组(根据学生具体情况选用)

《必修2数学教案6篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关文章

最新文章

分类

关闭