数学选修课心得7篇
心得体会的分享能促进知识的传播,推动集体智慧的积累与发展,心得体会不仅是个人反思的结果,更是能够影响他人情感的重要工具,小淘范文网小编今天就为您带来了数学选修课心得7篇,相信一定会对你有所帮助。
数学选修课心得篇1
第一次上选修课选科目的时候我就选了“数学文化”,因为当我看到这个名字时,我觉得学到一些数学的周边知识对我的学习与生活可能还是有点用的,所以我报了名。
“数学文化”这门课给我们介绍了很多数学的知识,包括数学的历史、数学的发展等等,我们国家是一个数学大国,也是一个数学古国,早在__多年前,我们的祖先就有“周三经一”的思想,也就是今天人们讲的圆周率π,而西方国家到了17世纪才有这样的概念,陈景润关于“哥德巴赫猜想”的卓越工作,令世界震惊。实际上,我们每一个人,天天都在跟数字打交道。一个人不识字完全可以生活,但是若不识数,就很难生活了,现代科技进步,对数学的要求越来越高,所以我觉得“数学文化”这门课程为我们剖析“数学”这门神秘而又与我们息息相关的科学,对我们来说是获益匪浅的。
听讲了几次课后,我觉得我收获蛮多,在老师的带领下,我们在数学的王国里漫游着,学习着,就像参观景点一般浏览了数学世界的奥秘,第一堂课的时候,老师就给我们讲了数学的历史:数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。除了认知到如何去数实际物质的数量,史前的人类亦了解了如何去数抽象物质的数量,如时间—日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。
除了数学的.历史以外,老师还给我们点评了数学史上的一些重大事件,如三次数学危机,这三次数学危机每一次都是数学探索者们在进行对数学这门学科的探索时产生的问题,每次出现了数学危机后,数学家们都努力地对其进行探究,通过各种各样的方法把这些问题解决。那节课让我了解到数学的世界是时时刻刻都会有矛盾的世界,研究数学就是在研究把这些矛盾解决掉或者用正当的理论把矛盾解释清楚的方法。
在这门课上我还第一次真正了解了欧式几何、非欧几何等数学分支以及它们诞生的意义和对人类文明的深刻影响等等很多关于数学的知识,让我第一次了解到在我们这个世界上,任何事物并不一定就像我们平时所看到的那样,三角形的内角和在某种情况下可能小于180°,也可能大
于180°,这些可能暂时对我们的用处还不大,但了解了这些东西对我们以后学好“数学”这门课程或者说研究这门科学有很大的帮助。
我很喜欢老师给我们上的最后一节课,因为在这节课上,老师给我们看了很多由数学分形而制成的各种各样的图像,如julia集合,一幅幅画面看得我眼花缭乱,仿佛进入了仙境一般,我都无法用言语来形容我当时的感受,那让我明白了原来生活中在衣服上、各种电器的屏保中的那么多美丽的图案都是出自数学这门神秘的学科里,那节课真的让我们体验到了数学的神奇与壮观。
老师的讲述让我慢慢消除了心中对数学这门学科的神秘光环,使我了解了数学,并让我看到了数学的美丽和壮观,还让我对数学——这门把一切事物抽象化的科学产生了浓厚的兴趣。虽然我知道,要学好数学很难,高数的第一学期课程:集合、极限、微积分的题目让我焦头烂额,但我清楚,作为一名计算机专业学生,不了解数学、不学好数学是不行的,我会努力地去学数学这门课程,不单单是学习数学的公式定理,更要学习数学家们坚持不懈、开拓进取的精神。
数学选修课心得篇2
由于受传统教学观念的影响,教师对高中数学新课程标准的理解还不到位,教材的编排体系也有很大的变化,教学中难免存在许多问题与不足。因此,在实施中,如何落实新课标,怎样根据教学中的问题进行反思与调整,是摆在我们面前的主要任务。下面结合自己一年多来的教学实践和对新课程的理解,谈谈高中数学新课程实施过程中的一点体会。
一、正确对待高中数学在新课程实施过程中存在的一些问题
1.高中新课程数学教材设置的问题。与我国历次数学课程改革相比,本次改革无疑力度最大。新课标,与现行高中数学教学大纲比较,无论在基本理念,知识结构、内容安排,还是在实施操作上都有较大的变化。
人教版新教材比原有教材有较大改变,知识体系上,如三视图、二分法,算法等内容的加入,一元二次不等式的解法,解三角形,数列等内容的后置等;引入与阐释知识也有很大不同,体现了新课程改的思想,有些知识的编排体系还有一些不妥当的地方,前后知识衔接不上等。事实上,无论是新的高中课程方案,还是高中数学课程标准,都还只是专家们的一种设计。虽然它经过数百名数学家、数学教育家、一线的教师和教研员的研讨,由于地域原因、学生原因但它离实用仍有距离。因此在实践时还存在一定的问题,我们教学时就是希望由此发现问题,并加以解决。
2.教师对新教材的认识存在问题。
从学科能力方面来说,课标是最低标准,考纲是最高标准。对“课时不够”,固然课程标准和教材有值得商榷之处,但反思我们的教学,恐怕有些原因还是出于自身。不少教师习惯参照高考命题,对某些知识点延拓加深。
教学内容相对较少、课时较多,可以这样做。但新课程对内容的处理和教学要求与原有教学大纲有较大不同,如果仍延缓原有习惯,课时量就可能不够。又如,过去习惯要求学生完成教材全部习题(包括练习和复习题),但新教材却有些习题很多学生不会做,于是有人认为教材习题太难。
事实上,高中数学课程标准要求,数学课程要适应人性选择,使不同的学生得到不同的发展。为适应这一要求,教材将习题编成三种层次,供学生选做。因此有些习题有学生不会做也不奇怪。这说明过去的某些观念要改。另外教材的编写意图教师是不是真正领会了,哪些该是让学生了解的,哪些是该让学生掌握的,是不是把握好了教学要求,这都是课时不够的原因。
3.对必修课程与选修课程的关系及具体内容的界定认识不清。举例说,高中几何分“立体几何”和“解析几何”两部分。“立体几何”分“立体几何初步”和“空间中的向量与立体几何”;“解析几何”分“平面解析几何初步”和“圆锥曲线与方程”。必修课程仅要求学生掌握“立体几何初步”和“平面解析几何初步”,其定位是清楚的。“立体几何初步”以三个载体(三视图、直观图、点线面的位置关系)帮助学生认识空间图形及其位置关系,建立空间想象能力,并在几何直观的基础上,初步形成对空间图形的逻辑推理能力。这对于只希望在人文、社会科学发展的学生来说,已经达到基本要求。
而对于希望在理工(包括部分经济类)等方面发展的学生,还需要学习“空间中的向量与立体几何”。这部分内容借助向量定量地处理空间图形的位置关系与度量问题。向量既是几何对象,又是代数对象,还有很好的物理背景,自然成为搭建几何和代数联系的一座桥梁。
在教学中,教师应关注不同内容定位差异,按照《标准》对不同的内容提出不同的要求,避免在必修课程要学生达到选修课要求,加重负担的情况出现。
二、采取积极的措施加以解决
1.认真学习和领会高中数学新课标的教学目标和理念,创造性的使用教材
新教材的特点是:突出学生是主体,教师为主导;突出双基,删除了过时的内容并且补充了适合学生发展和社会进步的新内容,注重对数学思维能力的提高;强调发展学生的数学应用意识;体现数学的文化价值;注重现代信息技术与课程的整合。较好的把握了新的课程标准对高中数学内容的要求。在教学中,要求教师以课标为纲,创造性地使用教材,即用教材教而不是教教材。
建议对新课程教学内容的处理,大体按以下三点来把握:(1)对已删内容,如所有版本教材都未出现,一般不要再捡回,如指数方程和对数方程的解法,指数不等式和对数不等式的解法,线段的定比分点,已知三角函数值求角,三角方程和反三角函数,极限等。(2)对有不同处理方式的内容,一般应按所教版本教学。如有不同处理方式在另外版本出现,对解题可能产生影响,则应适当告诉学生。(3)对新增内容,如必修3中的算法,不同版本表达方式和选用例、习题有差异。备课时,如能多参考一些版本,必能帮助加深理解,提高水平和效率。
2.要转变教学理念尊重学生的个体差异,满足多样化的学习需要
改变教与学的方式,是高中新课程标准的基本理念,在高中数学教学中,教师应把学生当成学习的主人,充分挖掘学生的潜能,处处激发学生学习数学的兴趣。教师不要大包大揽,把结论或推理直接展现给学生,要让学生独立思考,在此基础上,让师生、生生进行充分的合作与交流,努力实现多边互动。积极倡导“自主、合作、探究”的教学模式。
同时由于学生认知方式、水平、思维策略和学习能力的不同,一定会有个体差异,所以教师要实施“差异教学”使人人参与,人人获得必需的数学,这样也体现了教学中的民主、平等关系。在高中数学新课程实施中,教师应从学生已有的知识经验出发,创设丰富的教学情境,营造一个轻松、宽容的课堂气氛,激发学生探求新知识的兴趣,为学生的发展提供时间与空间,帮助学生在自主探索和合作交流的过程中,构建知识,训练技能,领会数学思想方法,获得数学活动的经验。课程功能,结构的改变,使学生发展的空间进一步拓宽,必将促进学生学习方式的改变。教师应对学生进行学法指导,如高中数学新课程设置了“数学建模”、“数学探究”、“数学文化”等学习活动,为学生提供了自主学习的空间,教师要充分利用这一时机,帮助学生体验在解决实际问题中的价值。
新课程实施的过程是一个不断学习、探索、研究和提高的过程,在这个过程中,需要我们认真反思、独立思考、交流探讨、学习研究,在实践和探索中不断前进。发现问题、反思教学、总结经验教训,是我们的`根本任务。随着新课程改革的不断深入,学生将由肤浅的、稚嫩的学习,逐步走向深刻的、成熟的学习,教师也会在使用新教材的同时,逐步走向成熟。
数学选修课心得篇3
8月28日,我参加了灵源讲堂“数学专场”的学习,又一次有幸地听到了林培育老师的精彩讲座《依课标抓本质促教学》,他以教师该如何学习课标的方式给我们阐述了在学习课标时的几个重点。
我最大的感受就是数学教学要抓住数学的本质,数学的本质是什么呢?数学不仅仅是科学知识的体系,更是人类文化的组成部分,这就要求我们的教育观念要变化,要把学生培养成为具有数学素养的人,要让学生学会数学思考的模式,这才是更重要的内容,尤其是数学思想的渗透更好的说明了这点。要教给学生思考的方法,这样学生学到的数学才是活的数学,才能在以后的'学习中灵活运用所学知识。
林老师又从四基的基本理念揭示数学课程中如何贯彻数学的基本本质,课标理念:人人都能获得良好的数学教育,不同人在数学上得到不同的发展。林老师强调要让数学回归本真与简单,让有价值的数学给孩子们带来信心与乐趣。在讲座中,他通过生动的课堂实录、课例,给我们一一展示了在教学中如何来体现四基,认为数学从现实世界中来,要加强内在逻辑的内化形成新理论,让学生掌握数学的根,再应用到现实生活中去。
听了林老师的讲座,我深刻地体会到学习的重要性。只有不断的学习,不断加强修养才能提升自己的教学能力。也只有真正读懂学生、读懂教材、读懂课堂,才能为孩子们奉献出既“好吃”又“有营养”的数学,让学生享受“快乐数学”。
数学选修课心得篇4
大学数学选讲课是对高等数学课的提升和深化,老师针对重难知识点,结合考研真题和参考资料精题,细致向我们讲解。在解题的过程中,老师向我们传授了解题的不同思路角度,教会我们要学会举一反三,将知识点融会贯通。点拨启发式的教学激发着同学们学习的兴致,使我们受益匪浅。
大学数学选讲不仅对考研的同学有很大帮助,对像我这样不考研学习一般的学生也有益处。刚上大学时,高等数学我一度跟不上,总是云里雾里,后来抓紧学了一阵才有了些头绪。后来,我们学习的专业课如材料力学,结构力学等都用到了高等数学,才愈发感到它的重要性。现在大学数学选讲课,再一次让我面对高等数学,我的态度更加端正谨严。重温旧的知识点,在老师的点拨下,我能发现新的亮点,加深加固了我对知识点的理解和掌握。一题多解的解题过程,启发了我的解题思路,更是帮助我把许多知识点串联起来,增强了记忆。慢慢地,我从学习中找到了乐趣,对学习高等数学也有了信心,信心又激励着我不断探索,我发现学好一门课程树立信心很重要。
经过一学期的学习,我在高等数学的学习上也逐渐积累了一些经验体会。我感受到大学数学的学习和中学数学的学习是不样的。在大学之前的学习时,都是老师在黑板上写满各种公式和结论,我便一边在书上勾画,一边在笔记本上记录。然后像背单词一样,把一堆公式与结论死记硬背下来。哪种类型的题目用哪个公式、哪条结论,老师都已总结出来,我只需要将其对号入座,便可将问题解答出来。而现在,我不再有那么多需要识记的结论。唯一需要记住的只是数目不多的一些定义、定理和推论。老师也不会给出固定的解题套路。因为高等数学与中学数学不同,它更要求理解。只要充分理解了各个知识点,遇到题目可以自己分析出正确的解题思路。所以,学习高等数学,记忆的负担轻了,但对思维的要求却提高了。每一次高数课,都是一次大脑的思维训练,都是一次提升理解力的好机会。
高等数学的学习目的不是为了应付考试,因此,我们的学习不能停留在以解出答案为目标。我们必须知道解题过程中每一步的依据。正如我前面所提到的,中学时期学过的许多定理并不特别要求我们理解其结论的推导过程。而高等数学课本中的每一个定理都有详细的证明。最初,我以为只要把定理内容记住,能做题就行了。然而,渐渐地,我发现如果没有真正明白每个定理的来龙去脉,就不能真正掌握它,更谈不上什么运用自如了。于是,我开始认真地学习每一个定理的推导。有时候,某些地方很难理解,我便反复思考,或请教老师、同学。尽管这个过程并不轻松,但我却认为非常值得。因为只有通过自己去探索的知识,才是掌握得最好的。
学习高等数学还要注意一下几点。
一、走出心理障碍
我想学不好高数的大多数人都会说自己学习高数没有兴趣,学习高数确实枯燥乏味,面对的除了x,y,z别无他物。这些同学当中极大数是高中时的数学没有学懂,因此一上来就失去了自信心,自认为自己不行学不懂高数。为什么这么说呢?因为我也认为学习高数是很枯燥的事,尤其是在凳子上一坐两个小时,听着教授的讲解,这更像是在解读天书。虽是这样说,但是学习高数的兴趣是自己激发的。就拿我来说吧,我曾经的数学学的并不好,高考时就因为数学没考好落榜,当时的心情可想而知,但来到大学看到高数课本时,刚开始自己也觉得很恐怖,因为在数学前边又加了“高等”二字,想想自己连“低等数学”都没学好,高等数学要怎么学呢?和大家一样,初来大学每天去占座,然后试着去认真听老师讲课,认认真真听了几节课下来,我对高数产生了“一点点”兴趣,觉得高数不过如此嘛,然后就越来越注重高数的学习。通过这个例子,我只想说对高数或者别的科目没兴趣那只是心理作怪,因此要克服学习高数的困难应该先克服自己的心理,具体应该怎样克服这种心理难关呢?我认为最重要的是要找回自己的自信心,不要以为自己就学不好高数,不要以为自己就不是学习高数的料,你没试着认真的学,你咋知道学不好呢,因此学好高数我认为第一点就是要有自信心和专心的思考,这才是学习好高数的基础。
二、注重学习方法
对于高数的学习,不同的人有不同的学习方法,我也建议大家能够总结出自己的一套学习方法,只有适合自己的学习方法才是最好的方法,下面我就简单介绍一下我的学习方法,我自认为不是最好的,但是最实用的。其实对于高数的学习很简单,学习数学首先就要不怕挫折,有勇气面对遇到的困难,有毅力坚持继续学习,大学数学与中学数学明显的一个差异就在于大学数学强调数学的基础理论体系,而中学数学则是注重计算与解题,所以:首先要尽快的适应这种差异,把思维放开了,不要太死板。然后就是要把握三个环节,提高学习效率:
1)课前预习:怎样预习呢?了解老师即将讲什么内容,相应的复习与之相关内容,把老师要讲的`内容和与之相关的内容从头到尾看一遍,比如说老师要讲积分,那就把导数公式,微分复习一下,所谓的看并不是走马观花,要静下心来看,但看到预习的内容里有不懂的地方做个记号,老师讲课的时候肯定会讲到,因为高数老师可都是教授,学历和经验都很丰富。
2)认真上课:带着问题认真听课,一定要集中注意力,专心听讲,重点是注意老师的讲解方法和解题思路,其分析问题和解决问题的过程,记好课堂笔记,因为听课是一个全身心投入————听、记、思相结合的过程,如果老师让做题那一定要动手去做,做题才能体现出你的掌握情况,如果有不懂的地方,那下课一定要积极主动地问老师,老师肯定很乐意的给你讲解,直到你听懂为止,还有一点在大学给老师留一个好的印象很重要,多向老师请教就是一个很好的方法,会让老师觉得你爱学习,这样一举两得的事何乐而不为呢?
3)课后复习:当天必须回忆一下老师讲的内容,看看自己记得多少;然后打开教材把老师今天所讲的内容认真看一次,完善笔记,尤其是书上的例题,都很经典,一定要掌握解题方法,这点很重要,因为很多知识你以为课堂上接受了,但实际过几天就忘了,所以课后必
须复习,不懂的地方多和同学交流一下,多交流学习高数的心得。这里所说的交流不仅仅限于同学,也可以和老师,至于交流学习高数的心得不一定也要找好学生,其实,学的稍后的同学有时他们的学习方式很好,只是没有重视和培养而已,因此不要小看任何人。
数学选修课心得篇5
浅印象里提起数学一词,对于我个人来说,数学就是一堆堆死板无活力的公式,像是一个个严肃的战士,需要各种证明来计算我们课本或者卷纸上的问题。幼稚园时候,数学就是数数,简单的计算,简单到用手指头就能计算出结果;小学时候,数学就是不停的计算鸡鸭鹅狗笼子里多少只脚的问题;初中时候,问题变得多元化,但是从此开始了更没有什么趣味的代数和几何,不停的计算来证明,得分。唯一的一点趣味也无了踪影;高中时候,数学变成了高数,每天脑子里的正余弦定理,一切依旧没了趣味;大学时候,学的依旧叫高数,只是名字由高中数学变成了高等数学,依旧对数学提不起兴趣。无意中选修了这门选修课,却让我收获了另一种看法,一改以往的印象,其实数学是需要欣赏的,数学有它自己的文化和趣味,并不是一门枯燥反反复复的计算。
关于数学我这样理解:数学,用公式的话来解释它就是研究数量、结构、变化及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用。由计数、计算、量度和对物体形状及运动的现象中产生。数学家们拓展这些概念,为了公事新的猜想以及从何时选定的公式及定义中建立起严谨推导出的真理。
虽然说,数学存在着各种逻辑与抽象的问题,但是,这些都掩盖不住数学的没,数学的美不在于表面,而在于它的内在,数学的表面枯燥乏味,但是它的内在却是充满了乐趣。数学的美吸引了许许多多的人们来探索,人们喜欢数学,探索数学,其实就是被数学的美吸引。爱因期坦说过:“美,本质上终究是简单性。”他还认为,只有借助数学,才能达到简单性的美学准则。物理学家爱因期坦的这种美学理论,在数学界,也被多数人所认同。朴素,简单,是其外在形式。只有既朴实清秀,又底蕴深厚,才称得上至美。欧拉给出的公式:v—e+f=2,堪称“简单美”的典范。世间的多面体有多少?没有人能说清楚。但它们的顶点数v、棱数e、面数f,都必须服从欧拉给出的公式,一个如此简单的公式,概括了无数种多面体的共同特性,能不令人惊叹不已?
数学的发展无须社会的推动,其真理性无须实践的检验,当然,数学的进步也无须人类文化的哺育。于是,西方的数学界有“经验主义的复兴”。怀特(l、a、white)的数学文化论力图把数学回归到文化层面。克莱因(m、kline)的《古今数学思想》、《西方文化中的数学》、《数学:确定性的丧失》相继问世,力图营造数学文化的人文色彩。国内最早注意数学文化的学者是北京大学的教授孙小礼,她和邓东皋等合编的《数学与文化》,汇集了一些数学名家的有关论述,也记录了从自然辩证法研究的角度对数学文化的思考。稍后出版的有齐民友的《数学与文化》,主要从非欧几何产生的历史阐述数学的文化价值,特别指出了数学思维的文化意义。郑毓信等出版的专著《数学文化学》,特点是用社会建构主义的哲学观,强调“数学共同体”产生的文化效应。以上的著作以及许多的论文,都力图把数学从单纯的逻辑演绎推理的圈子中解放出来,重点是分析数学文明史,充分揭示数学的文化内涵,肯定数学作为文化存在的价值。
课上我们看了个视频,名字记不住了,但是确实很吸引我们,让我们感受到数学确实很重要,我们在不断的实践,无论哪个国家。这是人类的探索。
奥秘,数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。除了认知到如何去数实际物质的数量,史前的人类亦了解了如何去数抽象物质的数量,如时间—日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。
可见数学的发展是一步步发现深化和完善的,我们如同探险者,不断的推翻错误的观点和公式,然后用新的公式代替,最后期待实现真理的目的。数学的神秘和有趣是无尽的,是人们追求的,是人们在高科技现代化所需要的文明产物,可以说上到科学研究,下到吃穿住行没有一个可以完全脱离数学而存在的。它是支撑我们这个多元多彩世界的重要部分,没有它就没有这个丰富的世界。所以通过这门选修课,确实让我对数学有了更深的了解,我不能用以往的印象理解数学,误解数学的美。感谢老师以及数学,让我意识到数学有它独特的美,我们要用欣赏的眼光去看待数学,因为它不仅是一种解决问题的方法,也是一种美丽的文化。
数学选修课心得篇6
12月11日,我有幸在湾子参加了数学名师教学观摩课活动。几位名师用他们独特的教学艺术给我们呈现了一节节精彩纷呈的课堂,使我陶醉在他们教学艺术的旋律之中,引领我们朝着课堂教学所蕴涵的教学理念进行深层次的思考。下面我就结合实际来谈谈自己的一些体会。
一、注重与学生沟通,拉近教师与学生的距离感
课前教师同学生交流,让学生的身心愉悦,以饱满的热情,亢奋的斗志投入新授学习这一点值得学习。每位教师上课前都与学生交流教材以外的话题,比如:你知道老师叫什么,你了解老师多少等话题,以示缓解学生的紧张感,为学生在课堂上正常的思考问题、解决问题搭好桥、铺好路。
二、结合教材,创设有效的情境,真正为教学服务
每一位上课的老师都能根据小学生的特点为学生创设充满趣味的学习情景,充分发挥学生的主体作用,以激发他们的学习兴趣。注重从学生的生活实际出发,引导学生自主学习、合作交流的教学模式,让人人学有价值的数学,不同的人在数学上得到不同的发展,体现了新课程的教学理念。
三、学习方式生活化、艺术化,使学生感受数学与生活的联系
数学源于生活,生活中处处有数学。在我们日常生活中充满着许多数学知识,在教学时融入生活中的数学,使他们感到生活与数学密切相关的道理,感到数学就在身边,对数学产生亲切感,激发他们学习数学、发现数学的愿望。借助于学生的生活经验,把数学课题用学生熟悉的、感兴趣的、贴近于他们实际生活的素材来取代。
四、学习方式活动化,让学生主动获取知识
活动是学生所喜欢的学习形式。创设学生喜欢的活动,使其在自由、放松、活跃的学习氛围中积极主动地感知、探究、发现数学问题、从而创造性地解决问题。有的教师把学生分成几组,以便于学生交流讨论,提高学生解决问题的能力。
在这些观摩课当中,我看到的是老师与学生真实的交流,不再是单纯的教师教、学生学,而是一个统一体。每一位老师都放手让学生自主探究解决问题,教学中遇到一些简单的问题,就让学生自己通过动口、动手、动脑去解决,为学生提供了自由发挥,处理问题的空间,并且老师不断鼓励学生积极尝试,主动去探索问题,让每个学生都有参与思考和发表意见的机会,让每位学生都成为数学学习的主人。对于学生一时想不出来的问题,每一位教师都很有耐性的对学生进行有效的引导,充分体现“教师以学生为主体,学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”的教学理念。
五、坚定了自己的几个认识。
(1)合理使用教材,大胆选取学生身边的素材充实课堂,能更好的体现数学的生活化。
(2)信息窗信息的收集与问题提出的操作策略。以前我就提倡教师引导学生观察信息窗收集信息,提出问题。除了科学引导,适时激励外教师要重视板书的作用。要把信息窗中的主信息、主问题板书在黑板上,形成一个完整的传统样的文字应用题模式,引导学时理解图意。这次听课找到了这样的佐证,且效果很好。
(3)探究与渗透的关系怎样更合理?数学课需要探究,但绝不是最原始的经历,这种探究需要教师适时的铺垫引导。如果坎过大,沟过深,教师就要帮学生找一梯子,放一小船,引导学生思考的方向,从而达到成功的彼岸。从外省老师的讲课中体会较深华。
总之,通过这次学习,令我的眼界大开,领略了许多优秀老师的教学风采,为我的课堂教学增加了大量的宝贵经验。希望今后类似的活动还能有机会参加,我会将学到的经验运用到自己的课堂教学中,不断提高自己的教学水平。
数学选修课心得篇7
这次选修课我选了“数学文化”,因为当我看到这个名字时,我觉得学到一些数学的周边知识对我的学习与生活可能还是有点用的,所以我报了名。
“数学文化”这门课给我们介绍了很多数学的知识,包括数学的历史、数学的发展等等,早在20xx多年前,我们的祖先就有“周三经一”的思想,也就是今天人们讲的圆周率π,而西方国家到了17世纪才有这样的概念,陈景润关于“哥德巴赫猜想”的卓越工作,令世界震惊。实际上,我们每一个人,天天都在跟数字打交道。一个人不识字完全可以生活,但是若不识数,就很难生活了,现代科技进步,对数学的要求越来越高,所以我觉得“数学文化”这门课程为我们剖析“数学”这门神秘而又与我们息息相关的科学,对我们来说是获益匪浅的。
第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。除了认知到如何去数实际物质的数量,史前的人类亦了解了如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。
到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。
老师还给我们点评了数学史上的.一些重大事件,如三次数学危机,这三次数学危机每一次都是数学探索者们在进行对数学这门学科的探索时产生的问题,每次出现了数学危机后,数学家们都努力地对其进行探究,通过各种各样的方法把这些问题解决。那节课让我了解到数学的世界是时时刻刻都会有矛盾的世界,研究数学就是在研究把这些矛盾解决掉或者用正当的理论把矛盾解释清楚的方法。
有一节课上,老师给我们看了很多由数学分形而制成的各种各样的图像,我都无法用言语来形容我当时的感受,那让我明白了原来生活中在衣服上、各种电器的屏保中的那么多美丽的图案都是出自数学这门神秘的学科里,那节课真的让我们体验到了数学的神奇与壮观。
这门课让我对数学——这门把一切事物抽象化的科学产生了浓厚的兴趣。虽然我知道,要学好数学很难,学习数学不单单是学习数学的公式定理,更要学习数学家们坚持不懈、开拓进取的精神。