酸的性质教案参考7篇
老师们在写教案时,要时刻保持对学生的关注和理解,一份结构合理的教案能够帮助教师在课堂上灵活应变,适应学生的需求,以下是小淘范文网小编精心为您推荐的酸的性质教案参考7篇,供大家参考。

酸的性质教案篇1
教学内容:
国标苏教版第28~30页例1、例2及相应的“试一试”、“练一练”,练习五第1~5题。
教学目标:
1、在现实情境中,能初步理解小数的意义,学会读写小数,体会小数与分数的联系。
2、在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的兴趣。
3、初步养成善于观察、善于比较、善于交流等良好的学习习惯。
教学重点:
理解小数的意义。
教学过程:
一、交流信息,引入课题
1、在三年级时,我们认识了一些小数,你能说出几个吗?
2、课前大家已经收集了很多关于小数的资料,老师选择了一些比较有价值的,你可以轻轻地把这些资料读一读,然后挑选你最感兴趣的一条,谈谈你了解到了什么?又想到些什么?
(1)一块橡皮元,一本练习本元。
(2)一张信封元。
(3)王琳的身高米,体重千克。
(4)刘翔在国际田径超级大奖赛中,以秒的成绩刷新世界记录。
(5)一枚1分硬币的厚度大约是米。
(6)人体的正常体温是°°c。
(7)“神舟六号”在太空飞行时距地球表面最远的高度大约是千米。
3、引入课题
这些信息中的数都是小数,用小数可以描述一些事情,反映一些现象。看来,同学们对小数已经有了一些认识,想不想作进一步的的研究?你还想知道小数的哪些知识?
根据学生提出的问题揭示课题。
二、探究新知
1、学习小数的读法
小数怎么读?谁能把信息中的几个小数再读一读?
能发现小数是怎么读的吗?
让学生发现:小数点前面的数和我们学过的整数一样读,小数点后面的数只要依次一个一个地读。
出示几个小数,让学生读一读:
2、探究小数的意义和写法
(1)如信息中的、元这些小数是怎么来的?
小组内回忆6角写成元的过程。
那5分为什么可以写成元?同桌商量商量。
引导学生:元与分之间的进率是多少?1分是1元的1/100,是1/100元,可以写成元,那5分是1元的几分之几?是几分之几元?写成小数是多少元?
学生尝试说说7角5分转化为元的过程。
那6角8分可以写成几元?
(2)米是怎么产生的?谁能大胆地猜测一下?(教师出示米尺图)
引导学生说出:1厘米是1米的1/100,是1/100米,写成小数是米。
以小组为单位,在直尺上另外找出两个刻度,想一想,写成分数和小数各是多少?把它们写下来。
组织交流。
(3)猜一猜,把1米平均分成1000份,还会得到什么样的分数?如何写成小数?
把自己的猜想和小组里的同学交流交流,并试着把这些分数、小数写下来。
组织全班交流。
3、抽象概括:
仔细观察上面每组的分数和小数,你能发现什么?把你的发现在小组里和同学交流。
引导学生概括:通过刚才的学习,我们知道分母是10、100、1000……的分数,可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
以前我们学习了一位小数,今天又认识了两位小数和三位小数,还会有位数更多的小数吗?
4、教学“试一试”
先让学生独立完成,再组织交流,说说怎么想的。结合图来理解每个小数把整数“1”平均分成了几份,表示这样的几份。
三、练习拓展
1、把听到的小数记录下来。
早晨6点30分,小明从米宽的小床上起来,挤了米长的一段牙膏,用了小时刷牙洗脸,喝了一杯升的牛奶,吃了一只面包,背起千克的书包,飞快地向离家千米的学校跑去。
指名板演。读一读这几个小数,选择整数部分是零的小数说说它们表示几分之几。
2、最近学校附近开了一家文具店,但店里商品的标价不太规范,请你们帮个忙,把这些标价改成用“元”作单位的小数。(图略)
铅笔3角小刀8分直尺5角9分练习本76/100元
3、把你认为长度相同的找出来
4毫米米4/1000米米4厘米4分米4/10米
4、估价:一筒薯片的价格在5元~6元之间。
5、把课前收集的小数信息,挑一个用今天学到的知识介绍给同桌听。
四、课堂小结
今天,我们进一步认识了小数,你有哪些收获?
在我们的生活、生产中经常用到小数,课后围绕“生活中的小数”写一篇数学日记。
反思:
我总认为“小数的意义和读写”这一内容用传统的讲授法比较恰当,因为这些概念是约定束成的,而动手实践、自主探究等只能是一种形式上的追求。如何使传统教学与新理念融合在一起,达到比较完美的教学效果,本课进行了一点尝试。
1、以小数在生活中的实际意义为切入点,从学生的生活经验和知识背景出发,引导学生进行积极的体验。
课始,展示学生课前收集的小数信息,把小数的意义设置在一种生活化、需求化、个性化的大背景中,让学生用个性化的理解方式来表达对小数的理解。由于小数在生活中的普遍存在,学生已有一定的经验,因此,在教学小数的读法时,充分利用个别学生会读这一资源,让这部分学生大胆释放自己的学习能力和已有经验,通过他们的引读,让其他学生发现小数的读法。
2、以学生的自主学习为活动前提,营造自我探索、自我发现的学习环境。
小数的意义是本课的教学重点,在抽象这个概念的过程中,通过旧知的迁移,尝试让学生自主探究、合作交流,把他们引入研究性学习的氛围,主动建构知识。如回忆了6角为什么能写成元后,让学生在小组里商量商量5分为什么可以写成元?在米尺上找两个整厘米数的刻度,把它们写成分数和小数;猜一猜,如果把1米平均分成1000份,会产生什么样的分数,又如何写成小数?在学生经历了这么多的探究、体验后,引导学生观察每组中的分数和小数,从而发现抽象出分数的意义。
3、在解决实际问题中巩固知识,让学生感受数学的魅力。
本课的练习安排,彻底改变了教材上的读读、写写、做做的模式,而是通过把听到的情境中的小数记录下来、改写商品标价、找相同的长度、估价、介绍收集的小数信息等形式,使知识得到巩固和拓展,让学生感受到数学的有趣、真实。
酸的性质教案篇2
教学目的
1.使学生理解和掌握分数的基本性质,能应用“性质”解决一些简单问题.
2.培养学生观察、分析、思考和抽象、概括的能力.
3.渗透“形式与实质”的辩证唯物主义观点,使学生受到思想.
教学过程
一、谈话.
我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、
整数的互化方法.今天我们继续学习分数的有关知识.
二、导入新课.
(一)教学例1.
出示例1:用分数表示下面各图中的阴影部分,并比较它们的大小.
1.分别出示每一个圆,让学生说出表示阴影部分的分数.
(1)把这个圆看做单位1,阴影部分占圆的几分之几?
(2)同样大的圆,阴影部分占圆的几分之几?
(3)同样大的圆,阴影部分用分数表示是多少?
2.观察比较阴影部分的大小:
(1)从4 幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等.)
(2)阴影部分的大小相等,可以用等号连接起来.(把图上阴影部分画上等号)
3.分析、推导出表示阴影部分的分数的大小也相等:
(1)4幅图中阴影部分的大小相等.那么,表示这4 幅图的4个分数的大小怎么样呢?
(这4个分数的大小也相等)
(2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来).
4.观察、分析相等的分数之间有什么关系?
(1)观察 转化成 , 的分子、分母发生了什么变化?
( 的分子、分母都乘上了2或 的分子、分母都扩大了 2倍.)
(2)观察
(二)教学例2.
出示例2:比较 的大小.
1.出示图:我们在三条同样的数轴上分别表示这三个分数.
2.观察数轴上三个点的位置,比较三个分数的大小:
从数轴上可以看出:
3.观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律.
(1)这三个分数从形式上看不同,但是它们实质上又都相等.
(教师板书: )
(2)你们分析一下, 、 各用什么样的方法就都可以转化成 了呢?
三、抽象概括出分数的基本性质.
1.观察前面两道例题,你们从中发现了什么变化规律?
“分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变.”(板书)
2.为什么要“零除外”?
3.教师小结:这就是今天这节课我们学习的内容:“分数的基本性质”
(板书:“基本性质”)
4.谁再说一遍什么叫分数的基本性质?
教师板书字母公式:
四、应用分数基本性质解决实际问题.
1.请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似?
(和除法中商不变的性质相类似.)
(1)商不变的性质是什么?
(除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变.)
(2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算.
2.分数基本性质的应用:
我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解
决一些有关分数的问题.
3.教学例3.
例3 把 和 化成分母是12而大小不变的分数.
板书:
教师提问:
(1) ?为什么?依据什么道理?
( ,因为分母2乘上6等于12,要使分数的'大小不变,分子1也要乘上6.所以, )
(2)这个“6”是怎么想出来的?
(这样想:2×?=12,2ד6”=12,也可以看12是2的几倍:12÷2=6,那么分子1也扩大6倍)
(3) ?为什么?依据的什么道理?
( ,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以, )
(4)这个“2”是怎么想出来的?
(这样想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是10÷2=5)
五、课堂练习.
1.把下面各分数化成分母是60,而大小不变的分数.
2.把下面的分数化成分子是1,而大小不变的分数.
3.在( )里填上适当的数.
4. 的分子增加2,要使分数的大小不变,分母应该增加几?你是怎样想的?
5.请同学们想出与 相等的分数.
规律:这个分数的值是 ,然后只要按自然数的顺序说出分子是1、2、3、4、……分母是分子的4倍为:4、8、12、16……无数个.
六、课堂总结.
今天这节课我们学习了什么知识?懂得了一个什么道理?分数的基本性质是什么?这是学习分数四则运算的基础,一定要掌握好.
七、课后作业.
1.指出下面每组中的两个分数是相等的还是不相等的.
2.在下面的括号里填上适当的数.
酸的性质教案篇3
教学目标
1.使学生理解并掌握比例的意义和基本性质.
2.认识比例的各部分的名称.
教学重点
比例的意义和基本性质.
教学难点
应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.
教学过程
一、复习准备.
(一)教师提问复习.
1.什么叫做比?
2.什么叫做比值?
(二)求下面各比的比值.
12∶16 4.5∶2.7 10∶6
教师提问:上面哪些比的比值相等?
(三)教师小结
4.5∶2.7和10∶6这两个比的比值相等,也就是说两个比是相等的,因此它们可以
用等号连接.
教师板书:4.5∶2.7=10∶6
二、新授教学.
(一)比例的意义(课件演示:比例的意义)
例1.一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米.列表如下:
时间(时)
2
5
路程(千米)
80
200
1.教师提问:从上表中可以看到,这辆汽车,
第一次所行驶的路程和时间的比是几比几?
第二次所行驶的路程和时间的比是几比几?
这两个比的比值各是多少?它们有什么关系?(两个比的比值都是40,相等)
2.教师明确:两个比的比值都是40,所以这两个比相等.因此可以写成这样的等式
80∶2=200∶5或 .
3.揭示意义:像4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例.(板书课题:比例的意义)
教师提问:什么叫做比例?组成比例的关键是什么?
板书:表示两个比相等的式子叫做比例.
关键:两个比相等
4.练习
下面哪组中的两个比可以组成比例?把组成的比例写出来.
(1)6∶10和9∶15 (2)20∶5和1∶4
(3) 和 (4)0.6∶0.2和
5.填空
(1)如果两个比的比值相等,那么这两个比就( )比例.
(2)一个比例,等号左边的比和等号右边的比一定是( )的.
(二)比例的基本性质(课件演示:比例的基本性质)
1.教师以80∶2=200∶5为例说明:组成比例的'四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.(板书)
2.练习:指出下面比例的外项和内项.
4.5∶2.7=10∶6 6∶10=9∶15
3.计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?
以80∶2=200∶5为例,指名来说明.
外项积是:80×5=400
内项积是:2×200=400
80×5=2×200
4.学生自己任选两三个比例,计算出它的外项积和内项积.
5.教师明确:在比例里,两个外项的积等于两个内项的积.这叫做比例的基本性质
板书课题:加上“和基本性质”,使课题完整.
6.思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?
教师板书:
7.练习
应用比例的基本性质,判断下面哪一组中的两个比可以组成比例.
6∶3和8∶5 0.2∶2.5和4∶50
三、课堂小结.
这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组成比例.
四、巩固练习.
(一)说一说比和比例有什么区别.
(二)填空.
在6∶5=30∶25这个比例中,外项是( )和( ),内项是( )和( ).
根据比例的基本性质可以写成( )×( )=( )×( ).
(三)根据比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例.
1.6∶9和9∶12 2.1.4∶2和7∶10
3.0.5∶0.2和 4. 和7.5∶1
(四)下面的四个数可以组成比例吗?把组成的比例写出来.(能组几个就组几个)
2、3、4和6
五、课后作业.
根据3×4=2×6写出比例.
六、板书设计.
省略
酸的性质教案篇4
一、 说教材
1.教学内容:苏教版小学数学第九册第三单元认识小数第三课时,“小数的性质”(课本第34-3 5页,例5—例6)。
2.教材所处地位:本节是系统学习小数的开始,为后面学习小数四则计算做了必要的准备,起铺垫作用。
3.教学目标:
(1)让学生在现实的情景中通过猜想、验证以及比较、归纳等活动,理解并掌握小数的性质,会应用小数的性质化简或改写小数。
(2)学生经历从日常生活现象中提出问题并解决问题的过程,通过自主探索、合作交流等方式,积累数学活动的经验,发展数学思考的能力。
4. 教学重点:掌握小数的性质。
5. 教学难点:理解小数的性质。
二、说教法
通过直观、推理让学生充分感知,然后经过比较归纳,最后概括小数的性质,从而使学生从形象思维逐 步过渡到抽象思维,进而达到感知新知、概括新知、应用新知、巩固和深化新知的目的。
三、说学法
通过本节教学使学生学会运用直观的教学手段理解掌握新知识,学会有顺序地观察问题、对比分析问题、 概括知识及联想的方法。
四、教学程序
(一)情景导入激趣揭题
(课件出示)唐僧师徒一起去西天取经,有一天,他们口渴了,唐僧要把三根甘蔗分给三个徒弟吃,事先他把甘蔗分别装进三个袋子里,上面标注着长度:0. l00米、0.10米、0.1米,馋嘴的八戒抢先一步说:“我的肚子大,我吃长的。”说着拿了注有“0.100米”的袋子。沙和尚好不服气,上前对师傅说:“八戒好吃懒做,长的应该让给大师兄悟空吃。”悟空笑了笑说:“两位徒弟别吵了,无论哪个袋子都一样呀!”唐僧听了悟空的话,微笑着点了点头。
同学们,你们知道为什么师傅对悟空的`话点头微笑呢?这是因为大师兄悟空掌握了小数很重要的性质,学习了这节课,我们就知道其中的奥秘了”。(板书:小数的性质)
这样的设汁,旨在把枯燥的数学知识贯穿在小学生喜闻乐道的故事中,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。
(二)讲授新课
1、教学例5,初步感知
(1)出示例五情景图,两位同学购买学习用品后在交流购物情况,你从图中能获取哪些信息?(小明:“我买1枝铅笔用了0.3元”。小芳:“我买1块橡皮用了0.30元”。)
(2)提出问题:橡皮和铅笔的单价相等吗?为什么?你能想办法证明吗?先独立思考,有想法后4人小组交流。
(3)全班交流,归纳方法:
①用具体钱数解释:0.3元和0.30元都是3角,所以0.3元=0.30元
②结合计数单位理解:0.3是3个0.1,0.30也可以看作3个0.1,所以0.3=0.30
③用图表示:把两个同样大小的正方形分别平均分成10份、100份,其中的3份、30份分别用0.3、0.30表示。因为阴影部分大小相同,所以0.3=0.30。
(4)感知与体验:同学们想出了多种办法都能证明0.3元=0.30元,说明这两个小数确实相等。
教师引读0.3元=0.30元,谈话:从左往右看,小数末尾有什么变化?小数的大小怎样?你有了什么想法?使学生初步体验小数的末尾添上“0”,小数的大小不变。
2、教学“试一试”,加深体验
比较0.100米,0.10米和0.1米的大小。
首先让学生拿出事先准备好的米尺(10厘米以上),在米尺上找出100毫米、10厘米、1分米是同一点,说 明:100毫米=10厘米=1分米。
请同学们看米尺想,独立填写下表,集体讲评。
板书:因为100毫米=10厘米=1分米
所以0.100米 =0.10米=0.1米
在这里应用直观演示法,变抽象为具体。
a.从左往右看,是什么情况?(小数的末尾去掉“0”,小数大小不变)。
b.从右往左看是什么情况?(小数的末尾添上“0”,小数大小不变)。
c.由此,你发现了什么规律?(小数的末尾添上“0”或去掉“0”,小数的大小不变)。
在这里应用了比较法,便于发现规律,揭示规律,总结性质。
小数的末尾添上“0”或者去掉“0”,小数的大小不变。这叫做小数的性质。
为了帮助学生对小数性质的理解,教师强调指出:为什么在小数的末尾添“0”或去“0”,小数的大小就不变 呢?(因为这样做,其余的数所在数位不变,所以小数的大小也就不变。举例说明)小数中间的零能不能去掉?能不能在小数中间添零?(都不能,因为这样做,其余的数所在数位都变了,所以小数大小也就变了。举例 说明)整数是否具有这个性质?(没有,理由同上第二点)。
3、教学例6
(1)示情景图,让学生观察,并从图中能看出哪些信息。
(2)根据题目的要求各自在书上填空。
(3)提问:3.05元中的“0”为什么不可以去掉?
根据这个性质,通常可以去掉小数末尾的“0”,把小数化简。
试一试
不改变小数的大小,把0.4、3.16 、 10改写成三位小数。
0.4= 3.16= 10=
改写这三个数时应用了什么知识?为什么给三个数填上的“0”的个数不同?10是整数怎样把它改写成大小不变的三位小数?
强调:改写小数时一定要注意下面三点:
a.不改变原数的大小;
b.只能在小数的末尾添上“0”;
c.把整数改写成小数时,一定要先在整数个位右下角点上小数点后再添“0”。
(三)巩固练习
1. 练一练第1题
完成后观察每组中的两个数,你有什么发现?
(0.1和0.10,0.2和0.20,0.3和0.30每组里的两个数对应于数轴上的同一个点,说明小数的性质确实存在的。0.1=0.10,数轴上这个点还可以用哪些小数来表示)
2.练一练第2题
为什么0.5和0.50的大小相等,而0.5和0.05的大小不等?
(四)课堂作业:练习六第3题----第5题
(五)总结延伸
通过本课的学习,你有什么收获和大家分享?我们是怎样探索小数的性质的?
在整数的末尾添上或去掉0,整数的大小发生了很大的变化,而在小数的末尾添上或去掉0,小数的大小却不变,但是通过在小数的末尾添上或去掉0,我们就给一个小数找到了许多大小不变的朋友,0就是这样一个奇妙的数字。其实,数学王国里有许多奇妙的现象,等着我们不断去探索、发现。
附板书设计:
小数的性质
例5 0.3元=0.30 元
比较0.100米、0.10米和0.1米的大小。
因为100毫米=10厘米=1分米
所以0.100米=0.10米=0.1米
0.100=0.10=0.1
小数的末尾添上“0”或者去掉“0”,小数的大小不变。这叫做小数的性质。
例6 2.80元=2.8元 4.00元=4元 10.50元=10.5元
酸的性质教案篇5
教学内容:教材p39页例3,例4.练习十
教学目标
知识与技能:通过自主探究学会小数的化简和改写小数。
过程与方法:运用所学知识解决问题,养成探求新知的良好品质。
情感态度与价值观:感受透过现象看本质的过程以及数学在实际生活中的重要作用,体验问题解决的情趣。
教学重点:学会化简小数和改写小数。
教学难点:理解小数末尾。
教法:启发引导法
学法:观察、比较、合作交流
教学用具:多媒体课件。
教学过程
一、定向导学:2分
(一)准备
1、说一说小数的性质,“小数末尾”指什么?
2、揭示课题:小数的性质的应用
(二)展示目标
会运用小数的性质将小数进行化简和改写。
二、自主学习:(5分钟)
(一)化简小数
内容:内容:课本p39例3
时间:2分钟
方法:将例3 补充完整,再完成下面练习。
练习1、化简下面小数
0.40 1.850 20.900 0.080 103.00 1.180 0.480
(1--7组的4号发言,1号评价)
(二)改写小数
内容:内容:课本p39例4
时间:3分钟
方法:将例4 补充完整,再完成下面练习。
练习2、把下面小数改写成三位小数。
0.4 1.05 20.100 0.08 10 8.18 10.08
(1--7组的.5号发言,2号评价)
三、合作交流(5分)
“化简小数”和“小数的改写”时,小数的大小改变了吗?为什么?
四、质疑探究:5分钟
在运用小数的性质解决问题,关键是什么不能改变?
五、小结检测:23分钟
1、课堂小结:)
谈谈你有什么收获?有什么感受?还有问题吗?
2、检测:
a、化简下面个数
3.90.300 1.8000 500
5.7800.0040102.02060.0
b、不改变数的大小,把他们写成三位小数。
(1)3.090.61100
c、把相等的数用线连起来。
6.07 10.3
10.300 6.070
0.2 0.900
200.0700 0.02
0.9 200.07
3、堂清作业:课本p41、4.5
板书设计 :
小数性质的应用
例3、化简小数。 (小数的末尾)
0.70=0.7 105.0900=105.09
例4、不改变数的大小,把下面各数写成三位小数。
0.2=0.200 4.08=4.080 3=3.000
整数改写小数,要点小数点。
酸的性质教案篇6
(一)激趣引思、提出要求
同学们,你们听过阿凡提的故事吗?今天老师也带来了一则阿凡提的故事。让我们一一看!谁来读一读?(指名读)你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话呢?
有一些同学知道,还有一些同学不知道。不过没有关系,等我们学习了今天的内容之后,我相信在座的每一位同学都能够回答。你们有信心吗?恩,好,那我们就开始上课了!
(二)自主探究,发现规律
1、出示例1的四幅图。
我们先来看一道题目。分别用分数表示每个图里的涂色部分。
(1)谁来说第一个?
全部答完后问:这里的1/3谁来说说它表示什么含义呢?3/9呢?
同学们,你们比较比较这几幅图的阴影部分,想想看,你发现了什么呢?也就是说,哪3个分数是相等的呢?
(2)师:这里有个1/2,你能说一个和1/2相等的分数吗?
2/4、4/8、8/16......还有吧,是不是还可以说出好多好多啊?
那,这些分数是不是相等呢?咱们口说无凭,咱们来做个小实验证明它门是相等的,好不好?
先别急,先来看看有哪些实验要求。
咱们这个实验的目的上一什么?验证什么?
咱们实验的方法有哪些呢?
实验有什么要求?操作有序什么意思呢?要听从小组长的安排
1、实验目的:验证猜想
2、方法:折一折、分一分、画一画、算一算......
3、要求:小组合作,明确分工,操作有序
我们要来比一比,哪个小组做的实验既快又好。一会儿,我们把他的作品展示一下。好,开始!
学生操作,老师巡视指导。
集体交流结果。
咱们刚才通过做实验,发现这些分数的大小怎样?也就是分数的大小不变。这些分数的大小相等,可是它们的`分子、分母变了吧!怎么回事呢?这里面有什么规律呢?你发现了什么?能不能告诉老师。
把你的发现先和同桌交流交流。
生1:我发现由到,分子被扩大了2倍,分母也被扩大了2倍,所以它们是相等的。
师:还有谁想说说你的发现?
生2:我发现由到,分子被扩大了3倍,分母也被扩大了3倍,所以它们的大小相等。
师:换一组数据来说说自己的发现?
生:由到,分子、分母都被缩小了3倍,它们的大小不变。
师:刚才同学们都说了自己的发现,想想看,要使分数的大小不变分数的分子和分母应该怎样变化就能使分数的大小不变了呢?
师:为什么要0除外?
师:这就是咱们今天学习的“分数的基本性质”(板书课题)
师:谁来说说看,分数的基本性质是什么呢?
生:一个分数的分子和分母同时乘或除以一个相同的数(0除外),它们的大小不变。
我们一齐读一遍。
师:这个分数的基本性质跟咱们以前学的什么知识有点相似啊?除法中商不变的性质你还记得吗?
同学们想想看,这两个性质之间有什么关系呢?
根据分数与除法的关系,被除数相当于分数的分子,除数相当于分数的分母,在除法当中有商不变的性质,那在分数中也有它的基本性质。
师:好,那现在你知道阿凡提为什么会笑吗?他又说了哪些话呢?
师:2/6到3/9分子分母怎样变化的?分子和分母同时乘了1.5,呢也就是说这里相同的数不仅可以指整数,还可以指小数。
(三)巩固练习,强化记忆
好,那下面咱们就用今天学的知识来做几道题,好不好?
1、把书翻到61页,练一练第一题,请你涂一涂填一填。我看谁的动作最快。
集体交流。
2、下面我们来填空补缺想理由。(出示练一练第二题)
他们这样填是根据什么?
3、出示练习十一第二题
独立完成,集体订正。
(四)课堂作业,运用知识
练习十一第三题
(五)课堂,认识自己
今天这节课,你学到了什么?
酸的性质教案篇7
教学目标:1,使同学理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。
2,培养同学发现问题和解决问题的能力。渗透"事物之间是相互联系"的辩证唯物主义观点。
教学重点:掌握分数的基本的性质,能运用分数的基本性质解决有关的问题。
教学难点:理解分数的基本的性质。
教学课型:新授课
教具准备:课件
教学过程:
一,复习铺垫,准备迁移 [课件1]
1,120÷30的商是多少 被除数和除数都扩大3倍,商是多少被除数和除数都缩小10倍呢
2,比较下列每组数的大小。
3/4( )3/5 15/20( )4/20
3,把下面的分数改写成两个数相除的形式。
2/3=( )÷( ) 5/8=( )÷( )
二,探索新知,发展智能
1,同学操作:将手中的纸圆片平均分成若干份。
2,反馈。
(1)提问:a,若要求剪下其中的一半,想想剪下的份数各自占圆的几分之几
b,虽然每个同学所剪的份数不同,但它们之间大小关系怎样
板书: 1/2=2/4=3/6
c,观察一下:这些分数的分子,分母变化有什么规律
(2)引导同学概括出分数的基本性质,并与前面的猜测相回应。
(3)小结:这里的"相同的数",是不是任何数都可以呢
(零除外)
板书:分数的分子和分母同时乘上或者除以相同的数(0除外),分数的大小不变。
3,分数的基本性质与商不变的性质的比较。
提问:在除法里有商不变的`性质,在分数里有分数的基本性质。想一想:根据分数与除法的关系以和整数除法中商不变的性质,你能说明分数的基本性质吗
4,巩固认识。
p109 。1
(2)说数接龙。
5/6=5+5/( )……
三,运用延伸,深化概念
1,要求大小不变。[课件2]
1/3=( )/6 10/15=( )/6 1/4=5/( )
2,下面分数中哪两个分数相等 [课件3]
3/4 21/32 15/20 1/5 4/20
习后提问:a,依据是什么
b,3/4和1/5哪个大 你是怎么比较出来的
c,那么,从中你又有什么新发现 你的新发现是什么
四,全课总结
提问: a,这节课你学习了什么
b,运用分数的性质,你能做什么
c,本节课你还有哪些疑问 你还想从哪些方面去探索分数
的知识呢
五,家作
p109 。3,5,6
板书设计: 分数的基本性质
1/2=2/4=3/6
分数的分子和分母同时乘上或者除以相同的数(0除外),分数的大小不变。