小学奥数题教案8篇

时间:2025-01-02 10:41:03 分类:工作报告

教师只有在实践中不断摸索,才能制定出更具针对性的教案,教案的写作过程不仅是技巧,更是情感与智慧的结合,以下是小淘范文网小编精心为您推荐的小学奥数题教案8篇,供大家参考。

小学奥数题教案8篇

小学奥数题教案篇1

【教学目标】

知识目标:

通过实例,认识扇形统计图,了解扇形统计图的特点与作用。

能力目标:

能读懂扇形统计图,从中获得有效的信息,体会统计在现实生活中的作用。

情感目标:

让学生体会统计在现实生活中的'作用,渗透健康饮食的教育。

【教学重点、难点】

了解扇形统计图的特点与作用。

【教学策略】

课前让学生收集一些反映本地的或者反映现实生活的扇形统计图,通过交流,体会扇形统计图的特点与作用。

教学准备:各种扇形统计图、投影仪。

【教学过程】

一、导入新课。

谁知道我们以前学过哪些统计图?并且说出它们的特点?

(学生回答,教师小结)

那么,我们今天学习新的一种统计图《扇形统计图》。

二、教学扇形统计图的特点

1、用投影仪出示小丽一家三口一天各类食物的摄入量统计表。

2、先让学生通过计算独立填上表中的数据。

3、独立制作条形统计图。

4、出示扇形统计图。

5、组织学生交流两种统计图,你能从中获得哪些信息。

6、全班交流。

7、教师小结:条形统计图能清楚地看到哪个量多,哪个量少。而扇形统计图反映的是整体和部分的关系。

三、说一说。

用投影仪出示四幅扇形统计图,先让学生每幅图中各百分数的意义。再让学生说一说每幅统计图获得信息。

四、试一试。

1、出示每幅图。

2、交流这三个问题。

3、教师小结。

小学奥数题教案篇2

教学目标:

1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设法和代数法德一般性。

3在解决问题的过程中培养学生的逻辑思维能力。

教学重点:

感受古代数学问题的趣味性。

教学难点:

用不同的方法解决问题。

教学准备:

课件

教学程序:

一、激趣导入

师:咱班同学家里有养鸡的吗?有养兔的吗?既养鸡又养兔的有吗?把鸡和兔放在同一个笼子里养的有吗?在我国古代就有人把鸡和兔放在同一个笼子里养,正因为这样,在我国历才出现了一道非常有名的数学问题,是什么问题呢?你们想知道吗?这节课我们就共同来研究大约产生于一千五百年前,一直流传至今的“鸡兔同笼”问题。

师:关于“鸡兔同笼”问题以前你们有过一些了解吗?流传至今有一千五百多年的问题,是什么样呢?想知道吗?

二、探索新知

1(课件示:书中112页情境图)

师:同学们看这就是《孙子算经》中的鸡兔同笼问题。

这里的“雉”指的是什么,你们知道吗?这道题是什么意思呢?谁能试着说一说?

生:试述题意。(笼子里有鸡和兔,从上面数有35个头,从下面数有94只脚。问鸡兔各几只?)

师:正像同学们说的,这道题的意思是笼子里有若干只鸡和兔,从上面数有35各头,从下面数有94只脚。问鸡和兔各有几只?

师:从题中你发现了那些数学信息?

生:笼子里有鸡和兔共35只,脚一共有94只。

生:这题中还隐含着鸡有2只脚,兔有4只脚这两个信息。

师:根据这些数学信息你们能解决这个问题吗?这道题的数据是不是太大了?咱们把它换成数据小一点的相信同学们就能解决了。

2、出示例一(课件示例一)

题目:笼子里有若干只鸡和兔,从上面数有8个头,从下面数有26只脚,鸡和兔各有几只?

师:谁来读读这个问题。

谁能流利的读一遍?

请同学们轻声读题,看看题里告诉我们什么信息,要解决什么问题?

生:读题

师:现在就请你来解决这个问题,你想怎样解决?把你的想法和小组内的同学说一说。

生:我想我能猜出来。一次猜不对,多猜几次就能猜对。

师:按你的意思就是随意的猜,为了不重复,不遗漏,我们可以列表按顺序推算。(板书:列表法)

师:还有其他方法吗?

生:我想用方程法也能解决。(板书:方程法)

生:要是笼子里光有鸡或光有兔就好算了,可这笼子里却有两种动物,我还没想好怎么算。

师:那我们就不妨按笼子里只有鸡或只有兔来思考,假设笼子里全是鸡或全是兔,看脚数会有什么变化,说不定从中你们就能找到解题的思路呢。(板书:假设法)

师:还有别的方法吗?那这些方法行不行呢?下面就请同学们以小组为单位,对你们感兴趣的方法进行尝试验证一下吧。

生:在小组内尝试各种方法。

师:经过上面的研究学习,你们都尝试运用了哪种方法呢?下面以小组为单位进行汇报。

生1:我们小组用列表法找到了答案,有3只鸡,5只兔。

师:把你们研究的结果拿来让大家看看。这样按顺序推算,对于数据小的问题解决起来很方便,不过一旦数据比较大,比如笼子里的鸡和兔有100只,200只,甚至更多,再用这样的办法怎么样?

生:很麻烦。

师:是啊,那要花费很长时间。哪个小组还想汇报?

生:我们小组用方程法计算的。(生说计算过程,师板书过程。)

师:我们看这个方程列得是否正确?4x表示什么?2(8-x)表示的是什么?兔脚数+鸡脚数=什么?这就是列这个方程所依据的数量关系。谁能把这个数量关系完整的说一遍?

生:说数量关系。(鸡脚数+兔脚数=26只脚)

师:根据这个数量关系你能想到另两个数量关系吗?

生:叙述另外两个数量关系。(26只脚-鸡脚数=兔脚数26只脚-兔脚数=鸡脚数)根据这两个数量关系你又能列出哪两个方程呢?

生:汇报师板书两方程。

师:除了可以设兔有x只,还可以怎样设?

生:还可以设鸡有x只。那兔就有(8-x)只。

师:对,那根据什么数量关系你又能列出怎样的方程呢?

生:汇报,根据鸡脚数+兔脚数=26只能列出方程2x+4(8-x)=26根据26只脚-鸡脚数=兔脚数能列出26-2x=4(8-x)根据26只脚-兔脚数=鸡脚数能列出26-4(8-x)=2x。

师:同学们看根据不同的数量关系我们能列出这么多的方程,但是同学们要注意用方程法解决问题时必须要找准数量关系。

师:除了这两种方法,假设法有运用的吗?

生:汇报。我们小组是把笼子里的动物都看做鸡。(板书:全看作鸡)

生:我们是这样想的。假设笼子里都是鸡,应有脚8×2=16只,比实际少了26-16=10只,一只兔少算2只脚,列式为:4-2=2只,所以能算出共有兔10÷2=5只鸡就有8-5=3只。(生说师板书计算过程)

师:这位同学说的你们听明白了吗?结合算式进行明理。明确每一步算式各表示什么意义。

师:这种方法都明白了吗?结合课件图画进行解释质疑。

师解释:刚才我们把笼子里的动物都看做鸡(课件图画上显示)那么笼子里共就应该有多少只脚?

生:16只。

师:实际上笼子里有26只脚,怎么会少了10只脚呢?(课件显示)

生:每只兔子少算2只脚。

师:一共少算10只脚,每只兔子少算2只脚,所以有5只兔子,3只鸡了。

师:把笼子里的动物都看做鸡,你们会算了,要是把笼子里的动物都看做兔,(师板书:全看作兔)又该怎样思考呢?你能参照前面的方法自己试着做一做吗?

生:试做。

师:刚才已经假设都是兔的同学,再按假设全是鸡的情形算一算。

生:练做。

师:谁来说说假设全是兔该怎么算?

生:假设笼子里都是兔,就应有脚8×4=32只,比实际多了32-26=6只。一只鸡多算2只脚,4-2=2只。就能算出共有鸡6÷2=3只。兔就有8-3=5只。(生说师板书计算过程。)

师:你们也都算上了吗?师解释:要是都是兔的话,就有32只脚,而实际有26只脚,为什么会多出6只脚呢?(课件示)

生:每只鸡多算2只脚。

师:一共多算6只脚,每只鸡算2只,所以有3只鸡,5只兔。

师:还有运用其他方法的吗?

师:同学们看,通过上面的探究学习,我们共找到几种解决鸡兔同笼问题的方法?(三种)哪三种?(列表法,方程法,假设法)你们能说说这三种方法各有什么特点吗?

生汇报:列表法适合于数据小的问题,数据大了就不适用了。

方程法思路很简捷,但解方程比较麻烦。假设法,写起来简便,但思路很繁琐

师:那以后我们再解决鸡兔同笼问题时就要根据具体情况灵活选择计算方法。

三、巩固练习

师:现在就请你来解决那道数据较大的问题你们能解决吗?

生:独立解答后全班交流。

师:哪位同学愿意说说你是怎么解决这个问题的?

生:汇报不同的算法。(学生边汇报边把计算方法展示在实物展台上)

师:刚才我们用自己的办法解决了这个问题,你们想知道古人是怎么解决这个问题的吗?我们一起来看一看。(课件示)

师:古人的办法很巧妙吧?如果大家对这种解法感兴趣,课后可以再研究。

师:在一千五百年前,我国的古人就发明出这么的数学问题,一直流传到现在,他们还想出那么巧妙地解决办法,为我们后人留下了宝贵的知识财富,你想对他们说点什么吗?

四、全课总结

师:通过这节课的学习你有什么收获?

生:我学会用……方法解决“鸡兔同笼”问题。

师:今天通过大家的自主探索,找到了多种解决“鸡兔同笼”问题的方法。方程法和假设法应用得都比较广泛。生活中我们还会遇到类似“鸡兔同笼”的问题,比如有些租船问题,钱币问题等。下节课我们就应用这些方法去解决那些实际问题。

板书设计:

鸡兔同笼

列表法

方程法假设法

解:设有兔x只,鸡就有2(8-x)只。全看作鸡

4x+2(8-x)=268×2=16(只)

2x+16=2626-16=10(只)

x=54-2=2(只)

8-5=3(只)10÷2=5(只)

答:有5只兔,3只鸡。8-5=3(只)

26-4x=2(8-x)全看作兔

26-2(8-x)=4x8×4=32(只)

2x+4(8-x)=2632-26=6(只)

26-2x=4(8-x)4-2=2(只)

26-4(8-x)=2x6÷2=3(只)

8-3=5(只)

小学奥数题教案篇3

时间:

20__年12月3日

地点:

大会议室

主备人:

崔__

参加人员:

六年级全体数学教师

教研内容:

“鸡兔同笼”问题

教学目标:

1、初步认识鸡兔同笼的数学趣题,了解有关的数学史。能用列表法和画图法解决相关的实际问题。

2、结合图解法理解假设的方法解决鸡兔同笼问题。

3、在现实情景中,让学生初步体会画图、列表、假设等多种解题策略,使学生感受到数学思想方法的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。

教学重点:

能用列表法和画图法解决相关的实际问题。

教学难点:

结合图解法理解假设的方法解决鸡兔同笼问题。

重难点突破:

借助已有数据利用列表尝试(枚举法)解决问题从中体会数据之间的变化特点,有意识的为下面的方法做好铺垫,通过适当地 引导和学生小组合作探究相结合,让学生在尝试、探索、交流中农动“鸡兔同笼”问题的基本结构,经历不同的方法结局问题的过程形成此类问题的一般性策略。

模式方法:

提出问题——列举尝试——观察发现——讨论交流——寻找解法。

作业设计:

有浅入深“鸡兔同笼”的基本题型多练。

组内教师讨论要点:

1、引导学生理解提议,找出隐藏条件,帮助学生初步理解“鸡兔同笼”问题的结构特点。

2、列表虽然繁琐,但是一种重要的解决问题的策略的方法,是解法的基础,是重要教学内容之一,从中体会数量的变化规律。

3、假设法是学生应该掌握的一种方法,要让学生准确的说明算理,体会为什么假设的与所求的结果不是一致的道理。

4、列方程解时要借助实例,体会设x的技巧,因为学生学习内容的局限性,让学生体会设其中只数多的兔为x的道理,方法是设出一部分,根据总数列出方程(易列难解)

活动总结:

全体教师针对研究主题进行研讨,各抒己见,畅所欲言,结合自己以往的教学经验,探讨重点难点的突破方法,以教学中要注意的问题,让全体教师对刺客的教学内容有明确的思路。

小学奥数题教案篇4

一、目标

?知识与技能】

理解掌握并会运用列表法、假设法解决“鸡兔同笼”问题。

?过程与方法】

经历自主探索解决问题的过程,体验解决问题的策略的多样化;在解决问题的过程中,提高逻辑推理能力,增强应用意识和实践能力。

?情感态度价值观】

感受古代数学问题的趣味性。

二、重难点

?教学重点】

掌握运用列表法、假设法解决“鸡兔同笼”问题。

?教学难点】

理解掌握假设法,能运用假设法解决数学问题。

三、过程

(一)引入新课

ppt呈现课本的主题图,并提问:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?是什么意思?大家能不能算出各几何呢?

引出课题——《鸡兔同笼》

(二)探索新知

先从简单问题出发,呈现例1:8个头,26只脚,鸡和兔子各几只?猜测一下

教师总结学生回答:3只兔子,5只鸡,22只脚;4只兔子,4只鸡,24只脚。均不对

追问:按顺序列表填写一下,应该是各有几只?

得出结论有3只鸡,5只兔子。

进一步追问:还有没有其他方法?

学生活动:前后四人一小组讨论。

教师总结:假设笼子里都是鸡,那么多出来的脚的个数除以2便是兔子的只数,用头数减去便得到鸡的只数。如果假设所有的动物都是鸡,那么就有8×2=16只脚,这样就多出26-16=10只脚。多出的10只脚均为兔子的,一只兔子比一只鸡多2只脚,所以算得有10÷2=5只兔,3只鸡。

(三)课堂练习

ppt再次出示导入中的问题“上有三十五头,下有九十四足,问雉兔各几何”

学生活动:学生自主选择喜欢的方法进行解决,一名学生到黑板上板演,其余学生独立完成,在黑板上板演的学生在结束后充当小老师给其他同学进行讲解

(四)小结作业

提问:今天有什么收获?

教师引导学生回顾解决鸡兔同笼问题的方法。

课后作业:思考还有没有其他方式能够解决鸡兔同笼问题?自己设计鸡兔同笼的问题去考考小伙伴或家人。

四、板书设计

五、课后反思

小学奥数题教案篇5

数也可以求出来。

6、小结:现在你能从新总结一下这些方法的优势和适用范围吗?数目比较小时,用列表法。数目比较大时,列表法计算量大,就有局限性,比较麻烦,最好用假设法比较好。用假设法时要特别注意:如果假设是鸡而先求出的就是兔子,如果假设的是兔子那先求出的是鸡,两者相反。

__ 古人是怎样解决“鸡兔同笼”问题的?

1、假如让鸡抬起一只脚,兔子抬起两只脚,还有94÷2=47只脚。

2、这时每只鸡一只脚,每只兔子两只脚。笼子里只要有一只兔子,则脚的总数就比头的总数多1。

3、这时脚的总数与头的总数之差47-35=12,就是兔子的只数。

三、巩固练习

课本105页“做一做”的1、2题。

四、课堂总结:

师:通过今天的学习,你有哪些收获?

板书设计:鸡兔同笼

化繁为??

列表法

假设法:1)假设都是鸡

2)假设都是兔

教学反思:人教版四年级下册第九单元数学广角中—《鸡兔同笼》

教材分析:

“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在四年级下册数学广角中安排“鸡兔同笼”的教学内容,其教学方法与常规课不同。数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。因此,在教学此内容时,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。

学情分析:

“鸡兔同笼”问题对于四年级的学生来说是难于理解,四年级的学生已经虽然具备了应用逐一尝试法、列表法解决问题的基本能力。他们已初步接触多种解题策略,会一些基本的解决数学问题的方法。学生已初步具备一定的归纳、猜想能力,但是在数学的应用意识与应用能力方面需要进一步培养。

教学目标:

1、使学生了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、能尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设方法的一般性。

教学重点:

会用画图法、列表法和假设法解答“鸡兔同笼”问题。

教学难点:

用合理的方法解答生活中的“鸡兔同笼”问题。

教具准备:

多媒体课件、表格等。

教学过程:

一、创设情境、揭示课题。

1、播放《奔跑吧,兄弟》主题曲,同学们,你们知道这是什么节目的主题曲吗?

2、播放视频,介绍:20_年4月24日这期的《奔跑吧,兄弟》中,各位跑男被带到有密码的房间里,陈赫遇到了这样一道题。

这道题被收在《孙子算经》中,《孙子算经》是我国古代一部非常重要的数学名著, 今天,我们就来研究中国历史上著名的数学趣题 “鸡兔同笼问题”。(板书课题)

2、我们先从简单一些的问题入手,来探讨解决这类问题的方法,好吗?大家请看。

出示题目:鸡兔同笼一共有8个头,一共有26条腿。 鸡和兔各有几只?

二、合作探究、学习新知:

活动一:探究用猜测列表法解决“鸡兔同笼”问题。

学习方式:自学教材,小组合作交流

1、师:请大家自由读题,你们都知道了什么信息?

生:鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?

师:还有补充吗?有两个隐藏条件看谁细心发现了?。

生:鸡有2条腿,兔子有4条腿。鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?师评:他还发现了隐藏条件,审题真细心。

2、先猜一猜,鸡兔可能有几只?可能只有一种动物吗,为什么?

学生猜测,汇报。不可能都是鸡,因为如果都是鸡就会有16条腿,而题目中是26条腿。也不可能都是兔,因为如果都是兔就会有32条腿。

(1)师:我们采用列表法得出的答案,好吗?翻开书104页,按照顺序列表试一试。

(2)说一说你是怎么想的?从尝试举例过程中,你发现了什么规律?和小组的同学说一说。

(汇报交流)

小结讲解:鸡兔的总只数不变,多一只兔子就会少一只鸡,并会增加两只脚;多一只鸡就会少一只兔子,并会少两只脚。

活动二:探究用假设法解决“鸡兔同笼”问题。

学习方式:自学教材,小组合作交流。

小组1:假设全都是鸡:2×8=16(条)26-16=10(条) 10÷2=5(只)??兔子 8-5=3(只)??鸡 谁有不懂得问题要问他?你们看看是不是这样:看演示板书“假设法。”

师:除了可以假设都是鸡,还可以怎样假设呢?

小组2:引导学生说出都是兔,并演示。

师:实际上,你们刚才的这些方法都运用了一种数学思想。你们知道是什么思想么?

师:真好,你们发现了数学中一种重要的数学思想,就是假设思想。如果我们学会了用假设的数学思想啊,那我们能解决生活中的很多很多问题,是不是啊。

小结:同学们,刚才我们用很多方法解决了同一个问题,你觉得这些方法的核心思想是什么?(假设。所以鸡兔同笼问题又叫假设问题。)

3、发散思考、加深理解。

下面我们来帮陈赫找到他房间的密码,解放他吧!

出示:鸡兔同笼,有35个头,94条腿,鸡兔各有几只?

师:我们发现课本上的假设法理解起来比较抽象,现在大家换一种假设法来思考。你们看,这样行不行?

生:是什么样的假设法,让我们先睹为快!

师:是这样的,如果让每只兔子都立起两条腿,这时,鸡和兔的脚数是相等的,接下来会出现什么样的情况呢?

生:每个头有两条腿,35个头是70条腿。(94-70)少了24条腿,正好可以求出兔子的只数,24除以2等于12。

生:鸡的只数为:35-12 = 23(只)。

师:还有别的做法吗?怎样解答?

生:把每只鸡的翅膀看成是两条腿。这样每只头对应的是4条腿。共有140条腿,多出46条腿,多出的是23只鸡的腿,那么,兔的只数

小学奥数题教案篇6

一、古语鸡兔同笼题,揭示课题。

1、今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

生模仿古人读题,说说自己的理解。

2、揭示课题

二、自主探索,解决问题

1、简化鸡兔同笼。

笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?

2、探究方法

(1)列表法

鸡876543210兔012345678

(2)画图假设

用圆圈来表示鸡兔的头。那么,不管鸡兔具体有几只,我们首先要画几个圆圈?

现在,我想请一位同学来说说看,接下来该怎么办了?

师根据学生的述说添画脚,并适时地提问、板书:

少了几只脚?

2只2只地添,得添几个这样的2只?

94-70=24

24÷2=12

35-12=23

小结:看来,画图确实挺形象、直观的,同学们也容易理解。

三、推广应用,形成技能

“鸡兔同笼”问题不仅在中国非常有名,还流传到许多其他的国家。比方说

我们的.邻国日本,有一种“龟鹤算”的数学问题,就是从“鸡兔同笼”演变过去的。

出示:有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各有几只?

师:请你们用今天这节课学到的方法来解决这道题。

四、全总课总结

今天这节课,我们跨越了1500多年的历史,探讨了中国古代的数学名题。其实,像“鸡兔同笼”这样有趣的数学问题,在中国古代还有很多,有兴趣的同学可以多了解这方面的资料,我想,对你们的学习是很有帮助的。

本节亮点:

1、本节课,杨老师主要介绍的是”表格法“和”画图假设法“,让学生一一列举出来或者画图,化抽象为具体。

2、杨老师在处理”画图假设法“中,借助画图,把每一步列式所求的什么,引导学生说清楚。

小学奥数题教案篇7

学习内容:

“水桶和油桶”的问题

学习目标:

1、让学生增加对数学的兴趣,认识数学的多种形式。

2、另外教授一些数学计算的巧妙方法。

3、引导学生通过思考操作发现并验证“水桶和油桶”问题的特征,培养学生大胆猜测、勇于探究的求索精神。

4、利用简便方法,提高学生计算效率,更加高效的学习数学。

学习形式:

学生自主探索、合作交流

学习过程

一、引入

师:提出问题:你能解决这样的.问题吗?展台出示题目。

二、探究新知

1、请同学们取出1号靶,认真观察(引导学生观察)

2、小组交流,探究解决。

3、请同学们取出2号靶,尝试解决。(引导学生动手实践)如果有的学生做出来,让孩子展示,教师给予赞赏;如果学生做不出来,充分调动组内力量,探究解决。

4、请同学们按照组内交流出的方法各自解决。(小组合作,互相帮助)

三、课堂拓展

同学们通过今天这节课的学习,是不是觉得数学充满了奥秘呢?课后,有兴趣的同学可以在网络上找很多有关“水桶和油桶”的知识,然后和老师、同学们一起去研究研究,好吗?

今后老师会继续为你们介绍一些更有趣的数学现象,这些数学方法更贴近你们平时的数学学习,有助于你们更好地学习数学。

小学奥数题教案篇8

1、如右图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?

分析与解:本题的关键是要找出容器上半部分的体积与下半部分的关系。

这表明容器可以装8份5升水,已经装了1份,还能装水5×(8-1)=35(升)。

2、有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是30。现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米(见右图)。问:瓶内现有饮料多少立方分米?

3、有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图)。如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?

分析与解:需要涂漆的面有圆柱体的下底面、外侧面、上面的圆环、圆孔的侧面、圆孔的底面,其中上面的圆环与圆孔的底面可以拼成一个与圆柱体的底面相同的圆。涂漆面积为

4、将一个底面半径为20厘米、高27厘米的圆锥形铝块,和一个底面半径为30厘米、高20厘米的圆柱形铝块,熔铸成一底面半径为15厘米的圆柱形铝块,求这个圆柱形铝块的高。

6、一个底面直径为20厘米的圆柱形木桶里装有水,水中淹没着一个底面直径为18厘米、高为20厘米的铁质圆锥体。当圆锥体取出后,桶内水面将降低多少?

7、如左下图所示,圆锥形容器内装的`水正好是它的容积的,水面高度是容器高度的几分之几?

8、右上图是一个机器零件,其下部是棱长20厘米的正方体,上部是圆柱形的一半。求它的表面积与体积。

《小学奥数题教案8篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关文章

最新文章

分类

关闭