七年级数学教案6篇

时间:2024-12-07 14:41:09 分类:工作报告

教师在写教案时,需注重对学生情感态度的培养,促进全面发展,教案中应明确标识出每节课的知识重点和学生理解的障碍,以下是小淘范文网小编精心为您推荐的七年级数学教案6篇,供大家参考。

七年级数学教案6篇

七年级数学教案篇1

教学目标

1.知识与技能

①理解有理数的意义.②能把给出的有理数按要求分类.③了解0在有理数分类的作用.

2.过程与方法

经历本节的学习,培养学生树立分类讨论的观点和能正确地进行分类的能力.

3.情感、态度与价值观

通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.

教学重点难点

重点:会把所给的.各数填入它所在的数集的图里.难点:掌握有理数的两种分类.

教与学互动设计

(一)创设情境,导入新课

讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.

(二)合作交流,解读探究

学生列举:3,5.7,-7,-9,-10,0,-3,-7.4,5.2…

议一议你能说说这些数的特点吗?

学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.

说明:我们把所有的这些数统称为有理数.

七年级数学教案篇2

●教学目标

知识与能力:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。

过程与方法:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。通过应用绝对值解决实际问题,体会绝对值的意义。

情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。

●教学重点与难点

教学重点:绝对值的概念和求一个数的绝对值

教学难点:绝对值的几何意义及求绝对值等于某一个正数的有理数。

●教学准备

多媒体课件

●教学过程

一、创设问题情境

用多媒体动画显示:两只小狗从同一点O出发,在一条笔直的街上跑,

一只向右跑10米到达A点,另一只向左跑10米到达B点。若规定向右为正,则A处记做__________,B处记做__________。

以O为原点,取适当的单位长度画数轴,并标出A、B的位置。

(用生动有趣的图画吸引学生,即复习了数轴和相反数,又为下文作准备)。

2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两

又有什么特征?(从形和数两个角度去感受绝对值)。

3、在数轴上找到-5和5的`点,它们到原点的距离分别是多少?表示-和的点呢?

小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念———绝对值。

二、建立数学模型

绝对值的概念

(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)

绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5。

注意:①与原点的关系②是个距离的概念

练习1:请学生举一个生活中的实际例子,说明解决有的问题只需考虑的数绝对值。

(通过应用绝对值解决实际问题,体会绝对值的意义与作用,感受数学在生活中的价值。)

三、应用深化知识

1、例题求解

例1、求下列各数的绝对值

-1.6, , 0, -10, +10

解:|-1.6|=1.6 ||= |0|=0

|-10|=10 |+10|=10

2、练习2:填表

相反数 绝对值 2.05 1000 0 - -1000 -2.05

(以表格的形式将绝对值和相反数进行比较,为归纳绝对值的特征作准备)

3、根据上述题目,让学生归纳总结绝对值的特点。(教师进行补充小结)

特点:1、一个正数的绝对值是它本身

2、一个负数的绝对值是它的相反数

3、零的绝对值是零

4、互为相反数的两个数的绝对值相等

4、练习3:回答下列问题

①一个数的绝对值是它本身,这个数是什么数?

②一个数的绝对值是它的相反数,这个数是什么数?

③一个数的绝对值一定是正数吗?

④一个数的绝对值不可能是负数,对吗?

⑤绝对值是同一个正数的数有两个,它们互为相反数,这句话对吗?

(由学生口答完成,进一步巩固绝对值的概念)

5、例2、求绝对值等于4的数。

(让学生考虑这样的数有几个,是怎样得出这个结果的呢?对后一个问题由学生去讨论,启发学生从数与形两个方面考虑,培养学生的发散思维能力。)

分析:

①从数字上分析

∵|+4|=4,|-4|=4 ∴绝对值等于4的数是+4和-4画一个数轴(如下图)

②从几何意义上分析,画一个数轴(如下图)

∵数轴上到原点的距离等于4个单位长度的点有两个,即表示+4的点p和表示-4的点m

∴绝对值等于4的数是+4和-4

注意:说明符号“∵”读作“因为”,“∴”读作“所以”

6、练习本:做书上16页课内练习3、4两题。

四、归纳小结

本节课我们学习了什么知识?

你觉得本节课有什么收获?

由学生自行总结在自主探究,合作学习中的体会。

五、课后作业

让学生去寻找一些生活中只考虑绝对值的实际例子。

课本16页的作业题。

本人在近几届乐清市中、小、幼教师教学论文联评中均有获奖,特别是论文《谈数学学困生的惰性心态及教学策略》在全国数学教研第十一届年会论文(初中组)比赛中获三等奖;而且在近几年的说课比赛和优质课评比中表现出色;是校青年骨干教师,名教师培养对象。

乐清市虹桥镇第一中学 陈杨明

-4 -3 -2 -1 0 1 2 3 4

4个单位长度 4个单位长度

m

七年级数学教案篇3

教学目标

1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

3, 体验分类是数学上的常用处理问题的方法。

教学难点 正确理解分类的标准和按照一定的标准进行分类

知识重点 正确理解有理数的概念

教学过程

探索新知

在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).

问题1:观察黑板上的9个数,并给它们进行分类.

学生思考讨论和交流分类的情况.

学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.

例如,

对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)

通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,”。

按照书本的说法,得出“整数”“分数”和“有理数”的概念.

看书了解有理数名称的由来.

“统称”是指“合起来总的名称”的意思.

试一试:

按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的) 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与

学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

练一练

1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

2,教科书第10页练习.

此练习中出现了集合的概念,可向学生作如下的说明.

把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;

数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号:。

思考:

问题1:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

创新探究

问题2:有理数可分为正数和负数两大类,对吗?为什么?

教学时,要让学生总结已经学过的.数,鼓励学生概括,通过交流和讨论,教师作适当的指导,使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等。

小结与作业

到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

七年级数学教案篇4

教材分析:

“指数函数”是在学生系统地学习了函数概念及性质,掌握了指数与指数幂的运算性质的基础上展开研究的.作为重要的基本初等函数之一,指数函数既是函数近代定义及性质的第一次应用,也为今后研究其他函数提供了方法和模式,为后续的学习奠定基础.指数函数在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以指数函数应重点研究.

学情分析:

通过初中阶段的学习和高中对函数、指数的运算等知识的系统学习,学生对函数已经有了一定的认识,学生对用“描点法”描绘出函数图象的方法已基本掌握,已初步了解数形结合的思想.另外,学生对由特殊到一般再到特殊的数学活动过程已有一定的体会.

教学目标:

知识与技能:理解指数函数的概念和意义,能正确作出其图象,掌握指数函数的性质并能自觉、灵活地应用其性质(单调性、中介值)比较大小.

过程与方法:

(1) 体会从特殊到一般再到特殊的研究问题的方法,培养学生观察、归纳、猜想、概括的能力,让学生了解数学来源于生活又在生活中有广泛的应用;理解并掌握探求函数性质的一般方法;

(2) 从数和形两方面理解指数函数的性质,体会数形结合、分类讨论的数学思想方法,提高思维的灵活性,培养学生直观、严谨的思维品质.

情感、态度与价值观:

(1)体验从特殊到一般再到特殊的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题,激发学生自主探究的精神,在探究过程中体验合作学习的乐趣;

(2)让学生在数形结合中感悟数学的统一美、和谐美,进一步培养学生的学习兴趣.

教学重点:指数函数的图象和性质

教学难点:指数函数概念的引入及指数函数性质的应用

教法研究:

本节课准备由实际问题引入指数函数的概念,这样可以让学生知道指数函数的概念来源于客观实际,便于学生接受并有利于培养学生用数学的'意识.

利用函数图象来研究函数性质是函数中的一个非常重要的思想,本节课将是利用特殊的指数函数图象归纳总结指数函数的性质,这样便于学生研究其变化规律,理解其性质并掌握一般地探求函数性质的方法 同时运用现代信息技术学习、探索和解决问题,帮助学生理解新知识

本节课使用的教学方法有:直观教学法、启发引导法、发现法

教学过程:

一、问题情境 :

问题1:某种细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,以此类推,一个这样的细胞分裂x次后,得到的细胞个数y与x的函数关系式是什么?

问题2:一种放射性物质不断变化为其它物质,每经过一年剩余质量约是原来的 ,设该物质的初始质量为1,经过 年后的剩余质量为 ,你能写出 之间的函数关系式吗?

分析可知,函数的关系式分别是 与

问题3:在问题1和2中,两个函数的自变量都是正整数,但在实际问题中自变量不一定都是正整数,比如在问题2中,我们除了关心1年、2年、3年后该物质的剩余量外,还想知道3个月、一年半后该物质的剩余量,怎么办?

这就需要对函数的定义域进行扩充,结合指数概念的的扩充,我们也可以将函数的定义域扩充至全体实数,这样就得到了一个新的函数——指数函数.

二、数学建构 :

1]定义:

一般地,函数 叫做指数函数,其中 .

问题4:为什么规定 ?

问题5:你能举出指数函数的例子吗?

阅读材料(“放射性碳法”测定古物的年代):

在动植物体内均含有微量的放射性 ,动植物死亡后,停止了新陈代谢, 不在产生,且原有的 会自动衰变.经过5740年( 的半衰期),它的残余量为原来的一半.经过科学测定,若 的原始含量为1,则经过x年后的残留量为 = .

这种方法经常用来推算古物的年代.

练习1:判断下列函数是否为指数函数.

(1) (2)

(3) (4)

说明:指数函数的解析式y= 中, 的系数是1.

有些函数貌似指数函数,实际上却不是,如y= +k (a>0且a 1,k z);

有些函数看起来不像指数函数,实际上却是,如y= (a>0,且a 1),因为它可以化为y= ,其中 >0,且 1

2]通过图象探究指数函数的性质及其简单应用:利用几何画板及其他多媒体软件和学生一起完成

问题6:我们研究函数的性质,通常都研究哪些性质?一般如何去研究?

函数的定义域,值域,单调性,奇偶性等;

利用函数图象研究函数的性质

问题7:作函数图象的一般步骤是什么?

列表,描点,作图

探究活动1:用列表描点法作出 , 的图像(借助几何画板演示),观察、比较这两个函数的图像,我们可以得到这两个函数哪些共同的性质?请同学们仔细观察.

引导学生分析图象并总结此时指数函数的性质(底数大于1):

(1)定义域?r

(2)值域?函数的值域为

(3)过哪个定点?恒过 点,即

(4)单调性? 时, 为 上的增函数

(5)何时函数值大于1?小于1? 当 时, ;当 时,

问题8::是否所有的指数函数都是这样的性质?你能找出与刚才的函数性质不一样的指数函数吗?

(引导学生自己分析和反思,培养学生的反思能力和解决问题的能力).

根据学生的发现,再总结当底数小于1时指数函数的相关性质并作比较.

问题9:到现在,你能自制一份表格,比较 及 两种不同情况下 的图象和性质吗?

(学生完成表格的设计,教师适当引导)

七年级数学教案篇5

绝对值

教学目标

1,掌握绝对值的概念,有理数大小比较法则.

2,学会绝对值的计算,会比较两个或多个有理数的大小.

3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.

教学难点 两个负数大小的比较

知识重点 绝对值的概念

教学过程(师生活动) 设计理念

设置情境

引入课题 星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

学生思考后,教师作如下说明:

实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;

观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.

学生回答后,教师说明如下:

数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;

一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|

例如,上面的问题中|20|=20,|-10|=10显然,|0|=0 这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体验数学知识与生活实际的联系.

因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备.

合作交流

探究规律 例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?

-3,5,0,+58,0.6

要求小组讨论,合作学习.

教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页).

巩固练习:教科书第15页练习.

其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别. 求一个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安排此例.

学生能做的尽量让学生完成,教师在教学过程中只是组织者.本着这个理念,设计这个讨论.

结合实际发现新知 引导学生看教科书第16页的图,并回答相关问题:

把14个气温从低到高排列;

把这14个数用数轴上的点表示出来;

观察并思考:观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?

应怎样比较两个数的大小呢?

学生交流后,教师总结:

14个数从左到右的顺序就是温度从低到高的顺序:

在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.

在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则

想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系.

要求学生在头脑中有清晰的图形. 让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性

数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习 ,加强数与形的想象。

课堂练习 例2,比较下列各数的大小(教科书第17页例)

比较大小的过程要紧扣法则进行,注意书写格式

练习:第18页练习

小结与作业

课堂小结 怎样求一个数的绝对值,怎样比较有理数的大小?

本课作业 1, 必做题:教产书第19页习题1,2,第4,5,6,10

2, 选做题:教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受.

2, 一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。

3, 有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型.为此设置了想象练习.

4,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。

七年级数学教案篇6

学习目标

1.掌握多项式、多项式的项及其次数,常数项的概念。

2.确定一个多项式的项、项数和次数。

3.由单项式与多项式归纳出整式概念。

4.在自主探索的学习过程中,引导学生观察、归纳、理解多项式,并与单项式进行比较,运用化归思想,让学到的知识系统化。

重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念。

难点:多项式的次数。

学法指导

从实际问题引入多项式的项,项数和次数的概念,通过具体分析所列式子,归纳多项式,注意和单项式的概念进行比较,帮助学生理解。在掌握单项式和多项式相关概念的过程中,体会式子是解决问题和进行交流的重要工具之一,体会在实际问题情景中运用整式的意义,进一步发展学生数学符号感。

《2.1.3多项式》同步四维训练含答案

新学期,两摞规格相同准备发放的数学课本整齐地叠放在讲台上,请根据图中所给出的数据信息,解答下列问题:

(1)请写出整齐叠放在桌面上的x本数学课本最上面距离地面的高度(用含x的整式表示);

(2)桌面上有56本与题(1)中相同的数学课本整齐叠放成一摞,若从中取走14本,求余下的数学课本最上面距离地面的高度.

《2.1.2多项式》课时练习含答案

1.下列说法中正确的是( )

a.多项式ax2+bx+c是二次多项式

b.四次多项式是指多项式中各项均为四次单项式

c.-ab2,-x都是单项式,也都是整式

d.-4a2b,3ab,5是多项式-4a2b+3ab-5中的项

2.如果一个多项式是五次多项式,那么它任何一项的次数( )

a.都小于5 b.都等于5

c.都不小于5 d.都不大于5

3.一组按规律排列的多项式:a+b,a2-b3,a3+b5,a4-b7,…,其中第10个式子是( )

a.a10+b19 b.a10-b19

c.a10-b17 d.a10-b21

4.若xn-2+x3+1是五次多项式,则n的值是( )

a.3 b.5 c.7 d.0

5.下列整式:①-x2;②a+bc;③3xy;④0;⑤+1;⑥-5a2+a.其中单项式有,多项式有.(填序号)

6.一个关于a的二次三项式,二次项系数为2,常数项和一次项系数都是-3,则这个二次三项式为.

7.多项式的二次项系数是.

8.老师在课堂上说:“如果一个多项式是五次多项式……”老师的话还没有说完,甲同学抢着说:“这个多项式最多只有六项.”乙同学说:“这个多项式只能有一项的次数是5.”丙同学说:“这个多项式一定是五次六项式.”丁同学说:“这个多项式最少有两项,并且最高次项的次数是5.”你认为甲、乙、丙、丁四位同学谁说得对,谁说得不对?你能说出他们说得对或不对的理由吗?

9.如果多项式3xm-(n-1)x+1是关于x的二次二项式,试求m,n的值.

10.四人做传数游戏,甲任取一个数传给乙,乙把这个数加1传给丙,丙再把所得的数平方后传给丁,丁把所得的数减1报出答案,设甲任取的一个数为a.

(1)请把游戏最后丁所报出的答案用整式的形式描述出来;

(2)若甲取的数为19,则丁报出的答案是多少?

《七年级数学教案6篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关文章

最新文章

分类

关闭