七年级数学教案优秀8篇

时间:2024-12-07 14:41:07 分类:工作报告

教师在写教案时,需注重对学生情感态度的培养,促进全面发展,教案的实施需要教师灵活应变,以适应课堂上突发的变化,下面是小淘范文网小编为您分享的七年级数学教案优秀8篇,感谢您的参阅。

七年级数学教案优秀8篇

七年级数学教案篇1

第一章 一元一次不等式组

1.1 一元一次不等式组

第1教案

教学目标

1. 能结合实例,了解一元一次不等式组的相关概念。

2. 让学生在探索活动中体会化陌生为熟悉,化复杂为简单的“转化”思想方法。

3. 提高分析问题的能力,增强数学应用意识,体会数学应用价值。

教学重、难点

1..不等式组的解集的概念。

2.根据实际问题列不等式组。

教学方法

探索方法,合作交流。

教学过程

一、 引入课题:

1. 估计自己的体重不低于多少千克?不超过多少千克?若没体重为x千克,列出两个不等式。

2. 由许多问题受到多种条件的限制引入本章。

二、 探索新知:

自主探索、解决第2页“动脑筋”中的问题,完成书中填空。

分别解出两个不等式。

把两个不等式解集在同一数轴上表示出来。

找出本题的答案。

三、 抽象:

教师举例说出什么是一元一次不等式组。什么是一元一次不等式组的解集。(渗透交集思想)

七年级数学教案篇2

教学目标:

1、知识与技能

(1)通过实例,感受引入负数的必要性和合理性,能应用正负数表示生活中具有相反意义的量。

(2)理解有理数的意义,体会有理数应用的广泛性。

2、过程与方法

通过实例的引入,认识到负数的产生是来源于生产和生活,会用正、负数表示具有相反意义的量,能按要求对有理数进行分类。

重点、难点:

1、重点:正数、负数有意义,有理数的意义,能正确对有理数进行分类。

2、难点:对负数的理解以及正确地对有理数进行分类。

教学过程:

一、创设情景,导入新课

大家知道,数学与数是分不开的,现在我们一起来回忆一下,小学里已经学过哪些类型的数?

学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的

为了表示一个人、两只手、……,我们用到整数1,2,……

为了表示“没有人”、“没有羊”、……,我们要用到0。

但在实际生活中,还有许多量不能用上述所说的自然数、零或分数、小数表示。

二、合作交流,解读探究

1、某市某一天的温度是零上5℃,最低温度是零下5℃。要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。它们是具有相反意义的两个量。

现实生活中,像这样的相反意义的量还有很多……例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的。“运进”和“运出”,其意义是相反的。

同学们能举例子吗?

学生回答后,教师提出:怎样区别相反意义的量才好呢?

待学生思考后,请学生回答、评议、补充。

教师小结:同学们成了发明家。甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃……。其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”。如今这种方法在记账的时候还使用。所谓“赤字”,就是这样来的。

现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作—5℃(读作负5℃)。这样,只要在小学里学过的数前面加上“+”或“—”号,就把两个相反意义的量简明地表示出来了。

让学生用同样的方法表示出前面例子中具有相反意义的量:

高于海平面8848米,记作+8848米;低于海平面155米,记作—155米;

教师讲解:什么叫做正数?什么叫做负数?强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的.数,零不是表示“没有”,它表示一个实际存在的数量。并指出,正数,负数的“+”“—”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号。

2、给出新的整数、分数概念

引进负数后,数的范围扩大了。过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数。

3、给出有理数概念

整数和分数统称为有理数。

4、有理数的分类

为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数。有理数还有没有其他的分类方法?

待学生思考后,请学生回答、评议、补充。

教师小结:按有理数的符号分为三类:正有理数、负有理数和零。在有理数范围内,正数和零统称为非负数。向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类。

三、总结反思

引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?

由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数。正数是大于0的数,负数就是在正数前面加上“—”号的数,负数小于0。0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃。

四、课后作业:课本p5习题1。1a第1、2、4题。

七年级数学教案篇3

学习目标

1. 理解有序数对的应用意义,了解平面上确定点的常用方法

2. 培养用数学的意识,激发学习兴趣.

学习重点: 理解有序数对的意义和作用

学习难点: 用有序数对表示点的位置

学习过程

一.问题导入

1.一位居民打电话给供电部门:"卫星路第8根电线杆的路灯坏了,"维修人员很快修好了路灯同学们欣赏下面图案.

2.地质部门在某地埋下一个标志桩,上面写着"北纬44.2°,东经125.7°"。

3.某人买了一张8排6号的电影票,很快找到了自己的座位。

分析以上情景,他们分别利用那些数据找到位置的。

你能举出生活中利用数据表示位置的例子吗?

二.概念确定

有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)

利用有序数对,可以很准确地表示出一个位置。

1.在教室里,根据座位图,确定数学课代表的位置

2.教材40页练习

三.方法归类

常见的确定平面上的点位置常用的方法

(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。

(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。

1.如图,a点为原点(0,0),则b点记为(3,1)

2.如图,以灯塔a为观测点,小岛b在灯塔a北偏东45,距灯塔3km 处。

例2 如图是某次海战中敌我双方舰艇对峙示意图,对我方舰艇来说:

(1)北偏东方向上有哪些目标?要想确定敌舰b的位置,还需要什么数据?

(2)距我方潜艇图上距离为1cm处的敌舰有哪几艘?

(3)要确定每艘敌舰的位置,各需要几个数据?

[巩固练习]

1. 如图是某城市市区的.一部分示意图,对市政府来说:

北偏东60的方向有哪些单位?要想确定单位的位置。还需要哪些数据?火车站与学校分别位于市政府的什么方向,怎样确定他们的位置?

结合实际问题归纳方法

学生尝试描述位置

2. 如图,马所处的位置为(2,3).

(1) 你能表示出象的位置吗?

(2) 写出马的下一步可以到达的位置。

[小结]

1. 为什么要用有序数对表示点的位置,没有顺序可以吗?

2. 几种常用的表示点位置的方法.

[作业]

必做题:教科书44页:1题

七年级数学教案篇4

教学目标

1.知识与技能

①理解有理数的意义.②能把给出的有理数按要求分类.③了解0在有理数分类的作用.

2.过程与方法

经历本节的学习,培养学生树立分类讨论的观点和能正确地进行分类的能力.

3.情感、态度与价值观

通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.

教学重点难点

重点:会把所给的各数填入它所在的数集的图里.难点:掌握有理数的两种分类.

教与学互动设计

(一)创设情境,导入新课

讨论交流现在,同学们都已经知道除了我们小学里所学的`数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.

(二)合作交流,解读探究

学生列举:3,5.7,-7,-9,-10,0,-3,-7.4,5.2…

议一议你能说说这些数的特点吗?

学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.

说明:我们把所有的这些数统称为有理数.

七年级数学教案篇5

一、教学内容分析

1。2有理数1。2。2数轴。这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的方法。日常生活中带见的用温度计度量温度,已为学习数轴概念打下了一定的基础。通过问题情境类比得到数轴的概念,是这节课的主要学习方法。同时,数轴又能将数的分类直观的表现出来,是学生领悟分类思想的基础。

二、学生学习情况分析

(1)知识掌握上,七年级的学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述;

(2)学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析;

(3)由于七年级学生的理解能力和思维特征和生理特征,学生的好动性,注意力容易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,一发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生的主动性。

三、设计思想

从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。小学里曾学过利用射线上的`点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等。

四、教学目标

(一)知识与技能

1、掌握数轴的三要素,能正确画出数轴。

2、能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。

(二)过程与方法

1、使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识。

2、对学生渗透数形结合的思想方法。

(三)情感、态度与价值观

1、使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点。

2、通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

五、教学重点及难点

1、重点:正确掌握数轴画法和用数轴上的点表示有理数。

2、难点:有理数和数轴上的点的对应关系。

六、教学建议

1、重点、难点分析

本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小。难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。

2、知识结构

有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的方法,本课知识要点如下:

定义规定了原点、正方向、单位长度的直线叫数轴

三要素原点正方向单位长度

应用数形结合

七、学法引导

1、教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法。

2、学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习。

八、课时安排

1课时

九、教具学具准备

电脑、投影仪、三角板

十、师生互动活动设计

讲授新课

(出示投影1)

问题1:三个温度计。其中一个温度计的液面在0上2个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度。

师:三个温度计所表示的温度是多少?

生:2℃,—5℃,0℃。

问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7。5m处分别有一棵柳树和一棵杨树,汽车站西3m和4。8m处分别有一棵槐树和一根电线杆,试画图表示这一情境。(小组讨论,交流合作,动手操作)

师:我们能否用类似的图形表示有理数呢?

师:这种表示数的图形就是今天我们要学的内容—数轴(板书课题)。

师:与温度计类似,我们也可以在一条直线上画出刻度,标上读

数,用直线上的点表示正数、负数和零。具体方法如下

(边说边画):

1。画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);

2。规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);

3。选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为—1,—2,—3,…

师问:我们能不能用这条直线表示任何有理数?(可列举几个数)

让学生观察画好的直线,思考以下问题:

(出示投影2)

(1)原点表示什么数?

(2)原点右方表示什么数?原点左方表示什么数?

(3)表示+2的点在什么位置?表示—1的点在什么位置?

(4)原点向右0。5个单位长度的a点表示什么数?

原点向左1。5个单位长度的b点表示什么数?

根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义。

师:在此基础上,给出数轴的定义,即规定了原点、正方向和单

位长度的直线叫做数轴。

进而提问学生:在数轴上,已知一点p表示数—5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么p对应的数是否还是—5?如果单位长度改变呢?如果直线的正方向改变呢?

通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可。

?教法说明】通过“观察—类比—思考—概括—表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力。

师生同步画数轴,学生概括数轴三要素,师出示投影,生动手动脑练习

尝试反馈,巩固练习

(出示投影3)。画出数轴并表示下列有理数:

1、1。5,—2。2,—2。5,,,0。

2。写出数轴上点a,b,c,d,e所表示的数:

请大家回答下列问题:

(出示投影4)

(1)有人说一条直线是一条数轴,对不对?为什么?

(2)下列所画数轴对不对?如果不对,指出错在哪里?

?教法说明】此组练习的目的是巩固数轴的概念。

十一、小结

本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究。

十二、课后练习习题1。2第2题

十三、教学反思

1、数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

2、教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

3、注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

七年级数学教案篇6

学习目标:

1、学会用计算器进行有理数的除法运算.

2、掌握有理数的混合运算顺序.

3、通过探究、练习,养成良好的学习习惯

学习重点:有理数的混合运算

学习难点:运算顺序的确定与性质符号的处理

教学方法:观察、类比、对比、归纳

教学过程

一、学前准备

1、计算

1)(—0.0318)÷(—1.4)2)2+(—8)÷2

二、探究新知

1、由上面的问题1,计算方便吗?想过别的方法吗?

2、由上面的问题2,你的计算方法是先算法,再算法。

3、结合问题1,阅读课本p36—p37页内容(带计算器的同学跟着操作、练习)

4、结合问题2,你先猜想,有理数的混合运算顺序应该是?

5、阅读p36,并动手做做

三、新知应用

1、计算

1)、18—6÷(—2)×2)11+(—22)—3×(—11)

3)(—0.1)÷×(—100)

2、师生小结

四、回顾与反思

请你回顾本节课所学习的主要内容

3页

五、自我检测

1、选择题

1)若两个有理数的和与它们的积都是正数,则这两个数()

a.都是正数b.是符号相同的非零数c.都是负数d.都是非负数

2)下列说法正确的是()

a.负数没有倒数b.正数的倒数比自身小

c.任何有理数都有倒数d.-1的倒数是-1

3)关于0,下列说法不正确的'是()

a.0有相反数b.0有绝对值

c.0有倒数d.0是绝对值和相反数都相等的数

4)下列运算结果不一定为负数的是()

a.异号两数相乘b.异号两数相除

c.异号两数相加d.奇数个负因数的乘积

5)下列运算有错误的是()

a.÷(-3)=3×(-3)b.

c.8-(-2)=8+2d.2-7=(+2)+(-7)

6)下列运算正确的是()

a.;b.0-2=-2;c.;d.(-2)÷(-4)=2

2、计算

1)6—(—12)÷(—3)2)3×(—4)+(—28)÷7

3)(—48)÷8—(—25)×(—6)4)

六、作业

1、p39第7题(4、5、7、8)、第8题

2、选做题:p39第10、11、12、1314、15题

七年级数学教案篇7

教学目标:

知识目标:使学生熟练地掌握多项式除以单项式的法则,并能准确地进行运算.

能力目标:培养学生快速运算的能力.

情感目标:培养学生耐心细致的学习习惯.

教学重点与难点:多项式除以单项式的法则是本节的重难点.

教学过程:

一、复习提问

1.计算并回答问题:

(1)4a3b4c÷2a2b2c;(2)(a2b2c)÷3ab2

(3)以上的计算是什么运算?能否叙述这种运算法则?

2.计算并回答问题:

(1)3x(x2x+1);(2)4a(a2a+2)

3.请同学利用2、3、6其间的数量关系,写出仅含以上三个数的等式.

说明:希望学生能写出

2×3=6,(2的3倍是6)

3×2=6,(3的2倍是6)

6÷2=3,(6是2的3倍)

6÷3=2.(6是3的2倍)

然后向大家指明,以上四个式子所表示的三个数间的关系是相同的,只是表示的角度不同,让学生理解被除式、除式与商式间的关系.

二、新课引入

对照整式乘法的.学习顺序,下面我们应该研究整式除法的什么内容?在学生思考的基础上,点明本节的主题,并板书标题.

1.法则的推导.

引例:(8x312x2+4x)÷4x=(?)

分析:

利用除法是乘法的逆运算的规定,我们可将上式化为4x·(?)=8x312x2+4x

然后充分利用单项式乘多项式的运算法则,引导学生对“待求的商式”做大胆的猜测:大体上可以从结构(应是单项式还是多项式)、项数、各项的符号能否确定、各具体的项能否“猜”出几方面去思考.根据课上学生领悟的情况,考虑是否由学生完成引例的解答.

解:(8x312x2+4x)÷4x

=8x3÷4x12x2÷4x+4x÷4x

=2x23x+4x.

思考题:(8x312x2+4x)÷(4x)=?

七年级数学教案篇8

教学目标:

1、经历探索有理数减法法则的过程。

2、理解并初步掌握有理数减法法则,会做有理数减法运算。

3、能根据具体问题,培养抽象概括能力和口头表达能力。

教学重点:

运用有理数减法法则做有理数减法运算。

教学难点:

有理数减法法则的得出。

教具学具:

多媒体、教材、计算器

教学方法;

研讨法、讲练结合

教学过程一、引入新课:

师:下面列出的是连续四周的最高和最低气温:

第1周第二周第三周第四周

最高气温+6℃0℃+4℃-2℃

最低气温+2℃-5℃-2℃-5℃

周温差

求每周的温差时,应运用哪一种运算?你认为计算结果应是什么?请列出算式,并写出计算结果。

生:温差分别是4℃、5℃、6℃、3℃,应使用减法运算。

列式为;

(+6)-(+2)=4

0-(-5)=5

(+4)-(-2)=6

(-2)-(-5)=3

教学过程二、有理数减法法则的推倒:

师:1、根据上面的计算和计算结果,让我们以求四周的温差为例子研究一下,是否可以用加法的知识类做减法的运算。

2、是否能直接把减法转化为加法来求差?猜想一下,完成这个转化的法则是什么?

3、自己设计一些有理数的减法,用计算器检验一下你归纳的减法法则是否正确。

举例:(-5)+()=-2

得出(-5)+(+3)=-2

所以得到(-2)-(-5)=+3

而(-2)+(+5)=+3

有理数减法法则:减去一个数,等于加上这个数的相反数。

教学过程三、法则的应用:

例1:先做笔算,再用计数器检验。

(1)(-34)-(+56)-(-28);

(2)(+25)-(-293)-(+472)

教学过程

解:(1)原式=-34+(-56)+(+28)

=-90+(+28)

=-62

(2)原式=+25+(+293)+(-472)

=+25+(-836)

=676

注意:强调计算过程不能跳步,体现有理数减法法则的运用。

检测题

教学过程四、练习反馈:

师:巡视个别指导,订正答案。

教学过程五、小结:

有理数减法法则:

减去一个数,等于加上这个数的相反数。

有理数减法法则:

减去一个数,等于加上

这个数的相反数。例1:先做笔算,再用计数器检验。

(1)(-34)-(+56)-(-28);

(2)(+25)-(-293)-(+472)

《七年级数学教案优秀8篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关文章

最新文章

分类

关闭