七年级数学下册教案人教版教案7篇

时间:2024-07-08 18:41:45 分类:工作报告

教案应该根据学生的实际情况作出调整和修改,教师通过准备教案可以有效利用教学时间,提高教学效率,小淘范文网小编今天就为您带来了七年级数学下册教案人教版教案7篇,相信一定会对你有所帮助。

七年级数学下册教案人教版教案7篇

七年级数学下册教案人教版教案篇1

教学目的:

(一)知识点目标:

1.了解正数和负数是怎样产生的。

2.知道什么是正数和负数。

3.理解数0表示的量的意义。

(二)能力训练目标:

1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。

2.会用正、负数表示具有相反意义的量。

(三)情感与价值观要求:

通过师生合作,联系实际,激发学生学好数学的热情。

教学重点:

知道什么是正数和负数,理解数0表示的量的意义。

教学难点:

理解负数,数0表示的量的意义。

教学方法:

师生互动与教师讲解相结合。

教具准备:

地图册(中国地形图)。

教学过程:

引入新课:

1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、?

内容:老师说出指令:

向前两步,向后两步;

向前一步,向后三步;

向前两步,向后一步;

向前四步,向后两步。

如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。

[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。

讲授新课:

1.自然数的产生、分数的产生。

2.章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。

3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。

举例说明:3、2、0.5、等是正数(也可加上“十”)

-3、-2、-0.5、-等是负数。

4、数0既不是正,也不是负数,0是正数和负数的分界。

0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。

5、让学生举例说明正、负数在实际中的'应用。展示图片(又见教材p5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地x银行的存折,说出你知道的信息。

巩固提高:练习:课本p5练习

课时小结:这节课我们学习了哪些知识?你能说一说吗?

课后作业:课本p7习题1.1的第1、2、4、5题。

活动与探究:在一次数学测验中,x班的平均分为85分,把高于平均分的高出部分记为正数。

(1)美美得95分,应记为多少?

(2)多多被记作一12分,他实际得分是多少?

七年级数学下册教案人教版教案篇2

一、素质教育目标

(一)知识教学点

1.使学生理解近似数和有效数字的意义

2.给一个近似数,能说出它精确到哪一痊,它有几个有效数字

3.使学生了解近似数和有效数字是在实践中产生的.

(二)能力训练点

通过说出一个近似数的精确度和有效数字,培养学生把握关键字词,准确理解概念的能力.

(三)德育渗透点

通过近似数的学习,向学生渗透具体问题具体分析的辩证唯物主义思想

(四)美育渗透点

由于实际生活中有时要把结果搞得准确是办不到的或没有必要,所以近似数应运而生,近似数和准确数给人以美的享受.

二、学法引导

1.教学方法:从实际问题出发,启发引导,充分体现学生为主全,注重学生参与意识

2.学生学法,从身边找出应用近似数,准确数的例子→近似数概念→巩固练习

三、重点、难点、疑点及解决办法

1.重点:理解近似数的精确度和有效数字.

2.难点:正确把握一个近似数的精确度及它的有效数字的个数.

3.疑点:用科学记数法表示的近似数的精确度和有效数字的个数.

四、课时安排

1课时

五、教具学具准备

投影仪,自制胶片

六、师生互动活动设计

教者提出生活中应用准确数和近似数的例子,学生讨论回答,学生自己找出类似的例子,教者提出精确度和有效数字的概念,教者提出近似数的有关问题,学生讨论解决.

七、教学步骤

(一)提出问题,创设情境

师:有10千克苹果,平均分给3个人,应该怎样分?

生:平均每人千克

师:给你一架天平,你能准确地称出每人所得苹果的千克数吗?

生:不能

师:哪怎么分

生:取近似值

师:板书课题

2.12近似数与有效数字

?教法说明】通过提出实际问题,使学生认识到研究近似数是必须的,是自然的,从而提高学生近似数的积极性

(二)探索新知,讲授新课

师出示投影1

下列实际问题中出现的数,哪些是精确数,哪些是近似数.

(1)初一(1)有55名同学

(2)地球的半径约为6370千米

(3)中华人民共和国现在有31个省级行政单位

(4)小明的身高接近1.6米

学生活动:回答上述问题后,自己找出生活中应用准确数和近似数的例子.

师:我们在解决实际问题时,有许多时候只能用近似数你知道为什么吗?

启发学生得出两方面原因:1.搞得完全准确有时是办不到的,2.往往也没有必要搞得完全准确.

以开始提出的问题为例,揭示近似数的有关概念

板书:

1.精确度

2.有效数字:一般地,一个近似数,四舍五入到哪一位,就说这个数精确到哪一位,这时,从左边第一个不是0的数字起,到精确的数位止,所有的数字,都叫做这个数的有效数字.

例如:3.3?有二个有效数字

3.33?有三个有效数字

讨论:近似数0.038有几个有效数字,0.03080呢?

?教法说明】通过讨论学生明确近似数的有效数字需注意的两点:一是从左边第一个不是零的数起;二是从左边第一个不是零的`数起,到精确的位数止,所有的数字,教者在有效数字概念对应的文字底下画上波浪线,标上①、②

例1.(出示投影2)

下列由四舍五入吸到近似数,各精确到哪一位,各有哪几个有效数字?

(1)43.8(2).03086(3)2.4万

学生口述解题过程,教者板书.

对于近似数2.4万学生又能认为是精确到十分位,这时可组织学生讨论近似数与5.4和近似数5.4万中的两个4的数位有什么不同,从而得出正确的答案.

?教法说明】对于疑点问题,通过启发讨论,适时点拨,远比教者直接告诉正确答案,理解深刻得多.

巩固练习见课本122页练习2、3页

例2(出示投影3)

下列由四舍五入得来的近似数,各精确到哪一位,各有几个有效数字?

学生活动,教者不给任何提示,请三位同学板演(基础较差些的做第一小题,基础较好的做第二、三小题)其余学在练习本上完成,请一优秀学生讲评同桌同学互相检查评定.

?教法说明】①通过本例的教学,学生能进一步把握近似数的精确度和有效数字的概念,②通过分层板演,学生点评,能提高所有学生的积极性,每个层次的学生都得到发展

(三)尝试反馈,巩固练习

(出示投影4)

一、填空

1.某校有25个班,光的速度约力每秒30万千米,一星期有7天,某人身高约1.65米,远些数据中,准确数为_________,近似数为____________

2.近似数0.1080精确到__________位,有_________个有效数字,分别是____________

二、下列各近似数,各精确到哪一位,各有哪几个有效数字:

1 32.02 1.5万3

学生活动:学生抢答:

?教法说明】抢答培养学生的竞争意识.

(四)归纳小结

师生共同小结

(1)有效数字的意义及两个注意点;

(2)带单位的近似数(为2.3万)和用科学记数法表示的近似数的精确度和有效数字的求法.

八、随堂练习

1.判断下列各题中的效,哪些是准确数,哪些是近似数?

(1)小明到书店买了10本书

(2)中国人口约有13亿

(3)一次数学测验中,有5人得了100分

(4)小华体重约54千克

2.填空题

(1)3.14精确到________位,有_________有效数字

(2)0.0102精确到_________位,有效数字是__________

(3)精确到__________位,有效数字是___________

3.选择题

(1)下列近似数中,精确到千位的是()

a.1.3万b.21.010

c.1018d.15.28

(2)有效数字的个数是()

a.从右边第一个不是0的数字算起

b.从左边第一个不是0的数字算起

c.从小数点后的第一个数字算起

d.从小数点前的第一个数字算起

九、布置作业

课本第124页a组l.

十、板书设计

七年级数学下册教案人教版教案篇3

知识与技能:

掌握本章基本概念与运算,能用本章知识解决实际问题。

过程与方法:

通过梳理本章知识点,挖掘知识点间的联系,并应用于实际解题中。

情感态度:

领悟分类讨论思想,学会类比学习的方法。

教学重点:

本章知识梳理及掌握基本知识点。

教学难点:

应用本章知识解决实际与综合问题。

一、知识框图,整体把握

教学说明:

1、通过构建框图,帮助学生回忆本节所有基本概念和基本方法。

2、帮助学生找出知识间联系,如平方与开平方,平方根与立方根,有理数与实数等等。

二、释疑解惑,加深理解

1、利用平方根的概念解题

在利用平方根的概念解题时,主要涉及平方根的性质:正数有两个平方根,且它们互为相反数;以及平方根的`非负性:被开方数为非负数,算术平方根也为非负数。

例1已知某数的平方根是a+3及2a—12,求这个数。

分析:由题意可知,a+3与2a—12互为相反数,则它们的和为0。解:根据题意可得,a+3+2a—12=0

解得a=3

∴a+3=6,2a—12=—6

∴这个数是36

教学说明:负数没有平方根,非负数才有平方根,它们互为相反数,而0是其中的一个特例。

2、比较实数的大小

除常用的法则比较实数大小外,有时要根据题目特点选择特别方法。

七年级数学下册教案人教版教案篇4

教学目标

1.会用加减法解一般地二元一次方程组。

2.进一步理解解方程组的消元思想,渗透转化思想。

3.增强克服困难的'勇力,提高学习兴趣。

教学重点

把方程组变形后用加减法消元。

教学难点

根据方程组特点对方程组变形。

教学过程

一、复习引入

用加减消元法解方程组。

二、新课。

1.思考如何解方程组(用加减法)。

先观察方程组中每个方程x的系数,y的系数,是否有一个相等。或互为相反数?

能否通过变形化成某个未知数的系数相等,或互为相反数?怎样变形。

学生解方程组。

2.例1.解方程组

思考:能否使两个方程中x(或y)的系数相等(或互为相反数)呢?

学生讨论,小组合作解方程组。

提问:用加减消元法解方程组有哪些基本步骤?

三、练习。

1.p40练习题(3)、(5)、(6)。

2.分别用加减法,代入法解方程组。

四、小结。

解二元一次方程组的加减法,代入法有何异同?

五、作业。

p33.习题2.2a组第2题(3)~(6)。

b组第1题。

选作:阅读信息时代小窗口,高斯消去法。

后记:

2.3二元一次方程组的应用(1)

七年级数学下册教案人教版教案篇5

教学目标

1.探索并了解三角形的外角的性质。

2.利用平行线性质来证明三角形外角的性质。

3.利用三角形内角和以及外角性质进行有关计算。

4、通过观察、实验、探索等数学生活,体验数学的美。

教学重点:掌握三角形外角的三个性质

教学难点:利用平行线证明三角形外角性质

学情分析

通过前面几节课的学习,学生已经掌握了三角形的基本概念,知道三角形的内角和为180°,三角形的外角与其相邻的内角是互补关系。这就为本节课的学习奠定了基础。本节课应注重渗透数学说理过程,从简单的问题中逐步培养学生运用几何语言的能力。

教学准备

多媒体、课件、三角板。并让学生课前准备好三角形纸片

教学过程

复习提问

1.什么叫三角形的外角?三角形外角和它相邻内角之间有什么关系?

2.三角形内角和等于多少度?

(由学生回答上述问题)

设计意图:

回顾上节课学习内容,为本节课的学习做好铺垫。

讲授新课

1.学一学:

自学课本47页长方形框上面的`内容。然后回答下列问题:

(1)找出△abc(如图)的外角,以及与这个外角相邻的内角、不相邻的内角。(2)外角与其相邻的内角之间的关系呢?

(3)外角与其不相邻的内角又会有什么关系

呢?这将是我们这节课要探索的主要内容。

设计意图:以学生自学的形式,来掌握与本节课相关的几个基本概念,并通过问题(3)进行设疑,引出这节课的重点内容。

七年级数学下册教案人教版教案篇6

教学目标:

1.理解有理数的意义.

2.能把给出的有理数按要求分类.

3.了解0在有理数分类中的作用.

教学重点:

会把所给的各数填入它所在的数集图里.

教学难点:

掌握有理数的两种分类.

教与学互动设计:

(一)创设情境,导入新课

讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.

(二)合作交流,解读探究

3,5.7,-7,-9,-10,0, , ,-3 , -7.4,5.2…

议一议你能说说这些数的特点吗?

学生回答,并相互补充:有小学学过的正整数、0、分数,也有负整数、负分数.

说明我们把所有的.这些数统称为有理数.

试一试你能对以上各种类型的数作出一张分类表吗?

有理数

做一做以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.

有理数

数的集合

把所有正数组成的集合,叫做正数集合.

试一试试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.

(三)应用迁移,巩固提高

?例1】把下列各数填入相应的集合内:

,3.1416,0,20xx,- ,-0.23456,10%,10.1,0.67,-89

?例2】以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?

有理数有理数

(四)总结反思,拓展升华

提问:今天你获得了哪些知识?

由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.

下面两个圈分别表示负数集合和分数集合,你能说出两个图的重叠部分表示什么数的集合吗?

(五)课堂跟踪反馈

夯实基??

1.把下列各数填入相应的大括号内:

-7,0.125, ,-3 ,3,0,50%,-0.3

(1)整数集合{};

(2)分数集合{};

(3)负分数集合{ };

(4)非负数集合{ };

(5)有理数集合{ }.

2.下列说法中正确的是()

a.整数就是自然数

b. 0不是自然数

c.正数和负数统称为有理数

d. 0是整数,而不是正数

提升能力

3.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?

2

七年级数学下册教案人教版教案篇7

一、 教学目标

1、 在了解相反意义量的基础上,使学生了解正负数的概念和学习正负数的意义。

2、 使学生能正确判断一个数是正数还是负数,明确零既不是正数也不是负数。

3、 学会用正负数表示实际问题中具有相反意义的量。

二、 教学重点和难点

重点:正负数的概念

难点:负数的概念

三、 教具

投影片、实物投影仪

四、 教学内容

(一 )引入

师:我们知道,为了表示物体的个数和事物的顺序,产生了1,2,3,4……这些数,我们把它叫做什么数?

生:自然数

师:为了表示“没有”,又引入了一个什么数?

生:自然数0

师:当测量和计算的结果不是整数时,又引进了什么数?

生:分数(小数)

师:可见数的概念是随着生产和生活的需要而不断发展的。请同学们想一想,在现实生活中是否还存在着别类型的数呢?如吐鲁番盆地最低处低于海平面155米,世界最高峰珠穆朗玛高出海平面8848.13米,我市某天最高气温是零上8摄氏度。

请学生用数表示这些量,遭遇表示困难。

师:为了能表示这些量,我们需要引入一种新数这就是本节课所要学习的内容。[板书:1、1正数与负数]

(二)新课教学

1、 相反意义的量

师:在现实生活中,我们常常遇到一些具有相反意义的量,比如:(投影片显示)

(1) 汽车向东行驶2.5千米和向西行驶1.5千米;

(2) 气温从零上6摄氏度下降到零下6摄氏度;

(3) 风筝上升10米或下降5米。

引导学生明确具有相反意义的量的特征:(1)有两个量 (2)有相反的意义

请学生举出一些相反意义的量的实例。

教师归结:相反意义中的`一些常用词有:盈利与亏损,存入与支出,增加与减少,运进与运出,上升与下降等。

2、 正数与负数

师:用小学里学过的数能表示这些具有相反意义的量吗?如何来表示具有相反意义的量呢?

由师生讨论后得出:我们把一种意义的量规定为正的,用“+”(读作正)号来表示,同时把另一种与它相反意义的量规定为负的,用“-”(读作负)号来表示。

师:例如,如果零上6℃记作+6℃(读作正6摄氏度),那么零下6℃记作-6℃(读作负6摄氏度),请同学们用同样的方法表示(1)、(2)两题。

生:(1)如果向东行驶2.5千米记作+2.5千米(读作正2.5千米),那么向西行驶1.5千米记作-1.5千米(读作负1.5千米);(2)如果上升10米记作+10米(读作正10米),那么下降5米记作-5米(读作负5米)。

师:像+6,+10,+2.5等前面放有“+”号的数叫做正数,像-6,-5,-1.5等前面放有“-”号的数叫做负数。正号可以省略不写,如+5可以写成5,但负数的负号能省略不写吗?

生:(讨论后得出)不能。

师:(以温度计为例)温度计中的0不是表示没有温度,它通常表示水结成冰时的温度,是零上温度与零下温度的分界点,因此得出:零既不是正数也不是负数。

(三)、练习

1、 学生完成课本第4页练习1,2,3

2、 补充练习

(1)在-2,+2.5,0, ,-0.35,11中,正数是 ,负数是 ;

(2)如果向东为正,那么走-50米表示什么意思?如果向南为正,那么走-50米又表示什么意思?

(3)欧洲人以地面一层记为0,那么1楼、2楼、3楼……就表示为0,1,2……那么地下第二层表示为 。

(四)小结

1、 引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示。

2、 在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定。

3、 要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与小学里学过的数有很大的区别。

(五)作业

见作业1.1节作业。

《七年级数学下册教案人教版教案7篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关文章

最新文章

分类

关闭