分数小学数学教案模板5篇

时间:2024-04-06 10:41:17 分类:工作报告

一份互动性的教案能够提高学生的参与度和合作能力,一份合理的教案能够合理分配教学时间和资源,下面是小淘范文网小编为您分享的分数小学数学教案模板5篇,感谢您的参阅。

分数小学数学教案模板5篇

分数小学数学教案篇1

教学内容:教科书第90页例2及练习二十一第1~4题。

教学目标:

1. 掌握稍复杂的求一个数比另一个数多(或少)百分之几的问题的解答方法。

2. 提高学生迁移类推和分析、解决问题的能力。

教学过程:

一、复习准备

1. 把下面各数化成百分数。

0.63 1.08 7 0.044 1/4 3/5 7/20 5/8

2. 说说下面每个百分数的具体含义,是怎么求出来的?(哪两个数相比,把谁看作单位“1”。)

某种花生的出油率是36%。

实际用电量占计划用电量的80%。

李家今年荔枝产量是去年的120%。

二、学习新课

1. 根据数学信息提问题。

出示例2的情境图,让学生根据图中提供的条件提出用百分数解决的问题。

学生可能提出以下问题:

①计划造林是实际造林百分之几?

②实际造林是计划造林百分之几?

③实际造林比计划造林增加百分之几?

④计划造林比实际造林少百分之几?

2. 让学生先解决前两个问题。

通过这两个问题的解决,提醒学生注意:解决这类问题一定先弄清楚哪两个数相比,哪个数是单位“1”,哪一个数与单位“1”相比。为学生学习新课解决数量关系稍复杂的求一个数比另一个数多(或少)百分之几的问题做好知识迁移的准备。

3. 让学生自主解决“实际造林比计划增加了百分之几”的问题。

(1)分析数量关系。

让学生自己尝试把数量关系用线段图表示出来。

让学生说说是怎样理解“实际造林比原计划增加百分之几”的。

通过讨论,让学生明确求实际造林比原计划增加百分之几,就是求实际造林比原计划增加的公顷数与原计划造林的公顷数相比的百分率,原计划造林的公顷数是单位“1”。

(2)确定解决问题的方法。

①让学生根据分析确定解决问题的方法,并列式计算出结果。

②让学生交流自己的方法,教师作适当的板书。

方法一:(14-12)÷12 = 2÷12≈0.167 = 16.7%

方法二: 14÷12 ≈1.167=116.7%

116.7% - 100% = 16.7%

问:还有其他方法吗?

③让学生总结,像这样的百分数问题有什么特点?解决它时要注意什么?

使学生明确:这是求一个数比另一个数增加百分之几的问题,它的解题思路和刚才同学们提出的第①、②个问题的分析思路基本相同,都要分清哪两个量在比较,谁是单位“1”,但这里比较的两个量中有一个条件没有直接告诉,必须先求出。

4. 改变问题。

师:如果问题是:计划造林比实际造林少百分之几?又怎么解决呢?

让学生列出算式,教师板书:

(14-12)÷ 14

5. 观察比较。

将例2的第一种算式与改变后的问题的解答算式相比较:

(14-12)÷12(14-12)÷14

师:不同点是什么?为什么除数不一样?

通过学生的讨论,再次强调两个问题中谁和谁比,谁是单位“1”。使学生体会到,用百分数解决问题和用分数解决问题一样要注意找准单位“1”。

6. 概括应用。

让学生读一读课本例2后面一段话,结合生活实际举例说一说“增加百分之几”、“减少百分之几”“节约百分之几”……等话的含义。

三、巩固练习

1. 提问:解决求一个数比另一个数多(或少)百分之几的问题,应注意什么?

2. 独立完成课本90页“做一做”的题目。

四、布置作业

课堂作业:练习二十二第1、第2题。

课外作业:练习二十二的第3、4题。

五、课堂总结反思

1. 学了这节课你还有什么疑问吗?

2. 能谈谈你的收获吗?

分数小学数学教案篇2

设计说明

分数乘、除法及比是本册教材的重点内容,为突出知识间的内在联系,帮助学生形成知识网络,本节复习课在教学设计上主要关注以下几个方面:

1.重视对分数乘、除法之间的关系及分数乘、除法计算方法的复习。

教学中,结合教材内容,进一步强调分数乘、除法之间的关系,加强计算方法的指导,使学生在进一步理解并掌握分数除法是分数乘法的逆运算的同时,计算能力得到提高。

2.重视对相关概念、性质及某些知识间相互关系的复习。

教学中,把比的相关概念、倒数的相关概念、比的性质以及比与分数、除法的关系等作为重要的复习内容,结合教材相关习题进行全面、系统地复习,使学生加深对概念的理解,同时将比与分数、除法联系起来。

3.重视对学生解决问题能力的培养。

教学中,把用分数乘、除法解决问题和用比解决实际问题作为重要的复习内容之一,结合教材习题,重点分析题中的数量关系,使学生通过对比练习,更好地掌握解决分数乘、除法问题以及比的有关问题的思路,提高学生分析问题、解决问题的能力。

课前准备

教师准备ppt课件

教学过程

⊙整理复习

1.结合教材习题,复习分数乘、除法的意义,计算方法及一些特殊规律。(板书课题)

(1)(出示课件)先想一想分数乘、除法应该怎样计算,再计算下面各题。

×=×=×18=

÷=÷=21÷=

÷=÷=×=

①复习分数乘法的计算方法。

(分子与分子相乘的积作分子,分母与分母相乘的积作分母。能约分的可以先约分再计算)

②复习分数除法的计算方法。

[甲数除以乙数(0除外)等于甲数乘乙数的倒数]

③生独立计算。

④观察左边两列算式,你能发现乘法与除法之间有什么规律吗?

(乘法与除法是互逆运算)

(2)结合×和×18复习分数乘法的意义。

(一个数乘分数表示求这个数的几分之几是多少;一个数乘整数表示求几个相同加数的和的简便运算,与整数乘法的意义相同)

(3)结合÷和21÷复习分数除法的意义。

(分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算)

(4)复习分数四则混合运算。

①分数四则混合运算的运算顺序是怎样的?

(与整数四则混合运算的运算顺序相同)

②下面各题怎样简便就怎样算,并说一说算理。

+++

15×

+3÷

3.7×+1.3÷

÷

0.5×

2.复习倒数的意义及相关知识。

(1)什么叫倒数?0为什么没有倒数?

(乘积是1的两个数互为倒数。因为0和任何数相乘都等于0,所以0没有倒数)

(2)写出下面各数的倒数。

51

(3)判断下面的说法是否正确。

①一个真分数的倒数一定比这个真分数大。()

②一个数乘分数的积一定比原来的数小。()

③一个数除以分数的商一定比原来的数大。()

3.复习比的意义及相关知识。

(1)(出示课件)说出下面每个比的前项、后项。

2∶50.6∶0.3

(2)结合上题,复习比的意义及比的各部分名称。

(两个数相除又叫做两个数的比,比号前面的数叫做比的前项,比号后面的数叫做比的后项)

(3)复习比值的意义及求法。

(比的前项除以比的后项,所得的商叫做比值)

(4)复习比与分数、除法的关系。

(根据学生的回答进行对比复习。比的前项相当于分数的分子、除法中的被除数;比号相当于分数的分数线、除法中的除号;比的后项相当于分数的分母、除法中的除数;比值相当于分数的分数值、除法中的商)

分数小学数学教案篇3

教学内容:

第十一册,百分数的应用。

教学目标:

1、通过对比,使学生沟通分数应用题和百分数应用题的联系和区别,使学生理解和掌握“求一个数是另一个数的百分之几”的应用题的解题思路和方法。

2、让学生在自主探索、合作交流的过程中理解百分率的意义,探求百分率的计算方法并学会计算。

3、让学生在具体的情境中感受百分数来源于实际,培养学生用数学的眼光观察生活的意识,在应用中体验数学的价值。

教学重点:

掌握简单的百分数应用题的计算方法。

教学难点:

探索百分率的意义和计算方法。

教学过程:

一、开展活动,产生问题。

1、师:同学们,上课前老师想问大家一个问题。土豆能浮在水上吗?

(边说边做)老师这里有一杯凉开水,另一杯凉开水中有一些盐,如果教师把同一只土豆分别放入杯中,观察发现了什么?

2、师:你能根据老师刚才的实验,提出相关的数学问题吗?

生提,师随机板书,如:盐占盐水的几分之几?这个问题同学们会解答吗?

(板书提供数据:盐80克,水170克)

现在能解答吗?指名口答。80÷(170+80)=80÷250 =8/25

3、小结:这是我们以前学过的求一个数是另一个数的几分之几的应用题,这类题的解答方法是──一个数÷另一个数。

二、探索新知

(一)如果求“盐占盐水的百分之几”该怎样解答呢?(生尝试)

1、与前面的算法比较一下,你想说什么?(引导学生比较异同)

2、师小结:它们的解法是相同的,都是用一个数÷另一个数,只是这类百分数应用题的结果要用百分数表示。

(二)百分率

1、师:通过刚才的计算,我们知道盐占盐水的32%。生活中,盐占盐水的百分之几一般叫含盐率。(板书:含盐率)揭题,今天这节课我们就来学习百分率的应用。(板书课题)

反问:什么叫含盐率?怎样求含盐率?

师:计算百分率的公式通常这样写:含盐率=盐的重量/盐水的重量×100%(板书)

同学们,对这个公式有什么不清楚的地方吗?(解释:为什么×100%)

2、出示例题

一号杯中:倒入200克清水中放入10克糖。

二号杯中:倒入200克清水中放入20克糖。

师:你会求这两杯糖水的含糖率吗?含糖率=糖的重量/糖水的重量×100%(板书)

3、想想这两杯糖水的口味会怎样?谁愿意尝一尝。为什么?

因为含糖率9.5%比0.5%大,说明了什么?含糖率越高,糖水就越甜。

三、知识迁移、完善揭题。

1、师:百分率在我们生活中是无处不在的,除了含糖率、含盐率外,你还能举出一些吗?老师这里也收集了一些。

读一读

实行科学种田,播种前需要进行种子发芽实验,计算发芽率;

用花生仁、油菜籽等榨油,可计算出油率;

每次考试后,老师要了解本班的及格率、优秀率;

护林工人了解小树苗的成活情况,可计算成活率;

工厂检验所生产零件的质量情况,需计算合格率;

根据学生每天的出勤情况,可计算出勤率;

调查学生作业的完成质量,可计算正确率;……

2、小组活动:请大家组成四人小组,每人挑一个你感兴趣的百分率说说它表示什么意思,并尝试着像老师一样编一道求百分率的应用题,并算出结果。学生讨论后交流。

四、比赛、调查、应用延伸

(一)只列式,不计算

1、加工400件产品,经检验,合格的有390件,求这批产品的合格率。

2、六(1)班今天有48人到校,2人事假,求六(1)班今天的出勤率。

3、某电视台调查了500个家庭,有462个家庭收看该电视台的节目,求该电视台的收视率。

(二)判断

(1)我校五年级共有100名学生,今天缺勤2人,今天五年级学生的出勤率为98%。

(2)林场种了杨树100棵,成活了98棵,杨树的成活率是98%棵。

(3)一批零件的合格率为85%,那么这批零件的不合格率一定是15%。

(4)工厂加工了105个零件,合格率达100%,则这批零件有100个合格。

(5)小麦的出粉率达到100%。

分数小学数学教案篇4

教学内容:

教材第27~28页的内容及练习。

教学目标:

1.借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。

2.掌握一个数除以分数的计算方法,并能正确计算。

3.培养学生解决简单实际问题的能力。

教学重难点:

1.掌握一个数除以分数的计算方法,并能正确计算。

2.整数除以分数的计算法则推导过程。

教学过程:

一、创设情景 激趣揭题

1.猜一猜:有4个苹果,每人得到2个,1个,1/2个,你知道这三 次分别是几个人分苹果吗?

2.引入并板书课题:分数除法(二)

设计意图:设疑激趣。 明确目标。

二、扶放结合 探究新知

1.分一分,引导感知一个数除以分数的意义。

2.画一画:引导完成27页的画一画,理解分数除以分数的计算方法。

3.引导完成28页的填一填,想一想,你发现了什么?

4.引导归纳计算方法。

设计意图: 理解一个数除以分数的`意义。 总结归纳计算法则。

三、反馈矫正

出示p28的试一试。

1.统一分数除法的计算法则。

2.指导完成p28练一练的1~4题。

四、小结评价 布置预习

1.引导小结:通过这节课的学习,你有什么收获?

2.布置预习: p29 分数除法(三)

板书设计: 分数除法(二)

4÷1/2=4×2=8 ;4÷1/4=4×4=16

一个数除以分数的意义与整数除法的意义相同。 一个数除以分数,等于乘这个分数的倒数。

分数小学数学教案篇5

本单元在分数四则计算和简单应用的基础上,主要教学分数四则混合运算和稍复杂的求一个数的几分之几是多少的实际问题。这部分内容是五年级教学的分数知识的综合、提高和总结,对掌握和应用分数知识有很大的影响。在内容的编排上有以下几个特点。

第一,教学计算,例题的内容容量很大。例1教学分数四则混合运算,包括按运算顺序计算和应用运算律简便计算。在这道例题中,既要把整数四则混合运算的运算顺序迁移过来,还要理解整数的运算律在分数中同样适用。把按运算顺序计算和应用运算律简便计算有机结合起来,把口算和笔算结合起来,组建四则混合运算的认知结构,有益于理解和掌握计算知识,形成实实在在的计算能力。

第二,教学解决实际问题,例题的编排细致。本单元解答稍复杂的求一个数的几分之几是多少的实际问题,一般列综合式计算。提出这个要求有两点原因:首先是前面刚教学了四则混合运算,学生具备列综合算式的能力。更重要的是,六年级(下册)列方程解答稍复杂的百分数应用题,要以现在的综合算式的数量关系为依托。

教材里稍复杂的求一个数的几分之几是多少的实际问题都是两步计算的问题,这些实际问题的数量关系是教学重点,也是难点。为此,编排了两道例题。例2及练一练都是先求总数的几分之几是多少,再求总数的另一部分是多少。例3及练一练都是先求一个数的几分之几是多少,再求比这个数多(少)几的数是多少。两道例题循序渐进地引导学生把第三单元里学到的求一个数的几分之几是多少这个数量关系与实际生活中的其他数量关系联系起来,提高解决实际问题的能力。

第三,不教学稍复杂的分数除法问题。传统教材教学分数乘法应用题之后还教学分数除法应用题,而且把除法应用题与乘法应用题对称编排。本单元只编排分数乘法问题,不教学除法问题,要突出稍复杂的求一个数的几分之几是多少的问题的数量关系。因为分数乘法问题在日常生活中比较常见,它的数量关系、解题思路能迁移到稍复杂的百分数问题中去。

一、 一题两解既含运算顺序,又含运算律的内容。

例1求做两种中国结一共用的彩绳数量,由于这个实际问题具有特殊性(两种中国结的个数相同,两种中国结每个用彩绳的米数不同),所以它有不同的解法。教材充分利用这一特殊性,让学生按不同的思路列综合算式解答,能有两个收获:第一个收获是体会分数四则混合运算的运算顺序。算式2/518+3/518的思路是,先分别求出两种中国结各用彩绳多少米,因此列出的算式要先算乘法。算式(2/5+3/5)18的思路是,先求出两种中国结各做一个要用彩绳的米数,这正是在算式里加括号的目的。所以,计算有括号的算式,要先算括号里面的。类似上面的那些体会,在教学整数四则混合运算时曾经有过。教学分数四则混合运算,再次体会运算顺序的合理性、必要性和可操作性是认知的需要。而且,获得这些体会并不困难。第二个收获是两种解法的结果相同,不但相互印证解答正确,还为理解运算律创造了具体的背景。

在教学运算顺序时还要注意两点: 一是让学生看着列出并计算的两道综合算式,说说分数四则混合运算的运算顺序,使解决实际问题得到的体会成为十分清楚的数学知识;二是引导学生回忆整数四则混合运算顺序,并和分数四则混合运算顺序相比较,看到两者的相同,使它们和谐结合,从而对运算顺序形成更具概括性的认识。

比较两种解法之间的联系是感受运算律的存在,比较哪种方法简便是引导简便运算。需要说明的是,第三单元计算分数连乘,把各个乘数的分子、分母交叉约分,已经在应用乘法交换律和结合律,所以本单元着重体会乘法分配律。教学时要处理好三点:首先是观察、讲述两种解法的联系,要让学生说说怎样把其中一道综合算式改写成另一道综合算式,加强对乘法分配律的理解和表述。然后是回忆分数连乘,让学生感受以前的计算已经应用了乘法的另两条运算律。如139/10,交叉约分时应用了乘法结合律,只是没有写出1/4(110);又如253/4,约分时应用了乘法交换律,只是241/5这个过程没有写出来。最后才总结出整数的运算律在分数运算中同样适用,即分数乘法也存在交换律、结合律、分配律,运算律也能使一些计算变得简便。

应用乘法分配律进行简便运算,例1仅作些引导,要通过练习才能掌握。和整数、小数范围内应用乘法分配律简便计算相比,这里的计算往往有两个特点:一是隐蔽,如6656/7。这是一道两数之积减两数之商的题,似乎与运算律对不上号。如果把分数除法转化成分数乘法,就显露出两个乘法算式有相同的因数,具备应用乘法分配律的必要条件。二是易混,如44/5+4/54。粗糙地看这道计算题,它的两道除法算式似乎很有联系,稍不留心就陷入简算误区。只有细心地把分数除法变成乘法,才会明白这道题不适宜应用分配律。本单元教材设计简便运算的练习题,注意了这两个特点。另外,还把按运算顺序计算和应用运算律简便计算混合编排,如第92页第2题。让学生设计各道题的算法,是培养计算能力的一种有效手段,也是促进思路灵活、反应灵敏的一种训练。

二、 数形结合教学较复杂问题的数量关系。

例2和例3是稍复杂的分数乘法应用题,它们都含有求一个数的几分之几是多少的数量关系。说它们稍复杂,是因为还分别含有其他的数量关系,有多种解法。就例2来说,可以根据运动员总人数减男运动员人数得女运动员人数列出算式459;也可以根据女运动员人数占运动员总人数的(19)列出算式45(19)。再说例3,可以根据去年班级数加今年比去年多的班级数得今年的班级数列出算式24+241/4;也可以根据今年的班级数是去年的(1+1/4)列出算式24(1+1/4)。教学这两道例题,教材里只出现前一种解法。因为这种解法的数量关系,是实际问题中最基本的数量关系,学生比较熟悉,已经掌握,容易寻找。而且,这些数量关系还是列方程解答其他分数、百分数应用题的基本关系,在以后的教学直至初中数学里经常应用。至于后一种解法,发展了对一个数的几分之几的认识,从一个已知的分率联想了其他的分率。如果学生能够独立想到,并且喜欢这样列式,应该是允许的。教材不出现后一种解法,不把它教给学生,是着眼今后,突出重点,减轻负担。

两道例题都利用线段图直观表达数量关系,帮助学生形成解题思路。例2已经画出了表示六年级参加学校运动会的人数的线段,学生在线段上表示男运动员占5/9的时候,会想到线段的另一部分表示的是女运动员人数,从而得到先算男运动员有多少人的思路。例3已经画出表示去年班级数的线段,要求学生继续画表示今年班级数的线段,从中体会今年班级数比去年多1/4的含义,看清今年班级数与去年班级数之间的关系,想到可以先算今年增加了几个班。教材引导学生画线段图,其目的不仅是帮助理解例题的数量关系和解题步骤,还要积累画线段图的体会和经验。以后解决实际问题,尤其是完成练一练和练习十六里的习题时,若有需要,能主动地通过画图帮助思考。为此,要加强画线段图的教学。首先让学生理解,先画出表示运动员总人数的线段和表示去年班级数的线段,才能继续表示男运动员人数和今年的班级数。这是分析男运动员占5/9以及今年班级数比去年增加1/4这两个分数的意义,得出的画图思路。其次让学生理解,男运动员是运动员总人数的一部分,可以表示在运动员总人数的线段图上。而今年的班级数与去年的班级数之间是比较关系,不存在包含与被包含的关系,因此各画一条线段表示它们。最后让学生看着画成的线段图,复述实际问题的题意,从中获得解题思路,体会线段图是表示数量关系的手段,是解决实际问题的工具。

练习十六里设计了一些题组,通过解题和比较,能进一步理解数量关系,明确解题思路。第4题的两问是连续的,先求得已经铺设的米数,就能继续求还要铺设的米数。比较这两问,能明白前一问里求840米的3/5是多少,后一问是从电缆总长里去掉已经铺设的米数。第8题的两小题分别是面粉比大米少1/5和面粉比大米多1/5,比较两个分数的意义,能理解两个问题的解法有何不同,以及为什么不同。第12题的两小题里都有1/4,一道题里是用去1/4,另一道题里是还剩1/4。因此,算式54在两道题里的意义不同。虽然两题都是求钢条还剩下的米数,解法不同的道理是很清楚的。第13题里设计了两个意义不同的1/8,其中一个1/8表示的是实际用煤节约的吨数相当于计划用煤吨数的份额,另一个1/8是实际用煤节约的吨数。由于两小题里实际用煤节约的吨数直接已知或不直接已知,求实际用煤吨数的方法自然就不同了。

《分数小学数学教案模板5篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关文章

最新文章

分类

关闭