圆柱的体积的教案6篇

时间:2024-03-19 17:41:43 分类:工作报告

教案应该结合实际的教学目标和要求,确保教学活动的可行性和实效性,优秀的教案能够根据学生的学习情况和需求进行灵活的调整和适应,下面是小淘范文网小编为您分享的圆柱的体积的教案6篇,感谢您的参阅。

圆柱的体积的教案6篇

圆柱的体积的教案篇1

?圆柱体的体积》教案

一、教学目标

(1)知道圆柱体积计算公式的推导过程,会应用该公式计算圆柱的体积。

(2)初步建立空间观念和逻辑推理能力。

(3)知道知识间是可以互相转化的。

二、教材的重点和难点

由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。其中,圆柱体积计算公社的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。

三、教学方法

1. 直观演示,操作发现

2. 巧设疑问,体现两“主”

3. 运用迁移,深化提高

四、说教学过程

(一)复习旧知识,为引入新知识作准备

师:同学们,我们学习了长方体和正方体这两种立体图形的体积,现在我们来回忆一下它们的计算公式(出示幻灯片1)

师:谁来说说长方体的计算公式?

生:长方体的体积=长×宽×高

师:对,长方体的体积=长×宽×高(出示公式0 师:那正方体呢?

生:正方体的体积=棱长×棱长×棱长

师:很好,正方体的体积=棱长×棱长×棱长(出示公式)师:它们还有一个统一的公式,大家一起来说说它们的统一公式 生:长方体或正方体的体积=底面积×高

师:对,长方体或正方体的体积=底面积×高(出示公式)师:用字母表示 生:v=sh 师:非常好,同学们,最近我们学了新的立体图形圆柱体,它也占有一定的空间,大家一定很感兴趣,怎样求出圆柱体的体积呢?这就是我们这节课要探索的问题(板书课题)

(二)、探求新知

师:大家请看,我们知道圆柱的上、下两个底面是圆形,谁来说说圆的面积公式?(手拿教具)生:s=∏r师:对吗?生:对

师:很好,圆的面积s=∏r,在学习圆的面积时,我们是把圆分成16个相等的扇形,然后拼出一个近似的长方形。现在,我们把圆柱的底面也分成16个相等的扇形,然后按照这些扇形沿着圆柱的高,把圆柱切开,这样就得到了16块体积相等的立体图形,老师这里有几个教具,大家动手来拼一拼,看看你们发现了什么?大家分成四组(分教具)

学生开始分组拼,然后讨论,师巡视(大约3分钟左右)2 2

师:大家都讨论好了吗?(拍手示意)生:好了

师:现在,有同学们来说说,你们发现了什么? 生:我们拼成了一个长方体 师:同学们,还有不同意见吗? 生:我们发现它不是拼成了一个长方体 师:不是拼成一个长方体?为什么呢? 生:因为它的长是曲线的

师:好,我们来看一下,大家请看(手拿教具)它的长是不是一条曲线呢? 生:是

师:对,所以说拼成的立体图形应该是一个近似的长方体。师:大家请看大屏幕(出示幻灯片2)

这是16等分拼成的近似长方体,它的长是曲线的;

这是32等分拼成的近似长方体,它会比较接近长方体(出示幻灯片)

这是64等分拼成的近似长方体,(出示幻灯片)也就是说拼成的等分越多,它就越接近长方体 师:大家还有别的发现吗?

圆柱的体积的教案篇2

探究目标:

1、组织学生开展测量、计算、估测等数学实践活动,使学生进一步掌握圆柱体积计算公式,并能运用公式正确地计算圆柱的体积。

2、在探索空间与图形的过程中,培养学生初步的空间观念及实践能力,同时结合具体的情境培养其估测意识。

3、使学生学会与他人合作,并能比较清楚地表达和交流解决问题的过程和结果。

4、让学生体验解决策略的多样性,不断激发其对数学的好奇心和求知欲,使其积极地参与数学学习活动。

教学重难点:

学生会应用圆柱体积公式解决实际问题。

探究过程:

一、迁移引入

提问:一个圆柱的底面积是80平方厘米,高是20厘米,求它的体积。

提问:如果已知的是底面半径和高,该怎么求呢?

二、自主探究

1、出示长方体鱼缸。

要计算这个长方体鱼缸能装多少水,就是求什么?

怎样求这个长方体的容积呢?

2、出示圆柱形鱼缸。

⑴估测。这个圆柱形鱼缸的容积大约是多少?

⑵操作、汇报。如果忽略容器的壁厚,这个圆柱形鱼缸的容积到底是多少呢?学生分小组进行操作计算,各小组派代表演示操作过程,并展示计算过程。

学生可能的回答有:

生1:这个圆柱的底面周长是94.5厘米,它的高是12厘米,计算过程如下:①94.5÷3.14÷2≈15.0(厘米)②3.14×152×12=8478(立方厘米)

生2:我们小组测量的是底面直径和高。底面直径长30厘米,高是12厘米,计算过程如下:3.14×(30÷2)2×12=8478(立方厘米)

生3:我们测量的是底面半径和高。3.14×152×12=8478(立方厘米)

⑷评价。

组织学生间进行评价。你最喜欢哪个小组的操作方案?为什么?每一步列式的意义是什么?使学生进一步掌握圆柱体积的计算方法。

⑸反思。引导学生将实际计算结果与自己的.估测结果进行对比。自己矫正偏差。

⑹延伸。如果每立方分米水重1千克,这个鱼缸大约能装水多少千克?

3、自学例题。

组织学生自学课本例5。同桌的两名同学结合例5的解答过程提出相关的数学问题,进行互问互答。

三、巩固练习

做教科书第80页“做一做”中的第2题、练习二十一的第5题。

学生独立完成,指名板演,集体评讲。

四、创意作业

学生综合运用所学的知识,进行计算、绘图、裁剪、粘贴等多项操作活动。

在一张长30厘米,宽20厘米的长方形纸上进行合理的裁剪,做一个无盖的圆柱形笔筒。比一比,谁做的笔筒容积最大?

圆柱的体积的教案篇3

教学目标:

1、使学生能够运用公式正确地计算圆柱的体积和容积。

2、初步学会用转化的数学思想和方法,解决实际问题的能力

4、渗透转化思想,培养学生的自主探索意识。

教学重点:掌握圆柱体积的计算公式。

教学难点:灵活应用圆柱的体积公式解决实际问题。

教学过程:

一、复习

1、复习圆柱体积的推导过程

长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

长方体的体积=底面积高,所以圆柱的体积=底面积高,即v=sh。

2、复习长方体的体积公式后,让学生独立完成练习三第6题,并指名板演。

二、解决实际问题

1、练习三第7题。

学生思考:要求粮囤所能装的'玉米的重量,需先知道什么?然后独立完成。

2、练习三第5题。

(1)指导学生变换公式:因为v=sh,所以h=vs。也可以列方程解答。

(2)学生选择喜爱的方法解答这道题目。

3、练习三第8题。

(1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。

(2)在充分理解题意后学生独立完成,集体订正。

4、练习三第9、10题

(1)学生独立审题,完成9、10两题。

(2)评讲第9题:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式v=sh)

(3)指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。利用这个底面积再求出另一个圆柱的体积。

三、布置作业

完成一课三练的相关练习。

圆柱的体积的教案篇4

设计说明

本节课是在学生已经了解了圆柱的特征,掌握了长方体体积的计算方法以及圆的面积计算公式的推导过程的基础上进行教学的。根据学生的认知水平和已有经验,本节课在教学设计上体现了以下几个特点:

1.创设问题情境,点燃探索激情。

基于“数学来源于生活,又应用于生活”这一理念,教学过程中通过呈现身边圆柱的体积问题,使学生感受到数学与现实生活的密切联系,认识到学习圆柱的体积计算公式的必要性,从而激发了学生的探究兴趣,使学习成为学生自觉的需求。

2.注重直观教学,引导合作迁移。

数学理论的表述往往是抽象的,它影响了学生数学思维的发展,而引导学生从观察和分析有关具体实物入手,就比较容易理解概念的本质特征。所以,教学中不但设计了通过排水法理解圆柱体积的.实验,而且还借助教具演示、课件演示等直观教学手段帮助学生推导出圆柱体积的计算公式,使学生从感性认识上升到理性认识,体会到知识的由来。

3.渗透数学思想,发展数学思考。

在本节课的教学中,充分利用教材内容,对学生有效地进行转化思想的渗透,使学生在体会运用转化思想可以化难为易、化复杂为简单、化生疏为熟悉等作用的同时,参与数学活动,提高解决问题的能力。

课前准备

教师准备 ppt课件

学生准备 圆柱形实物

教学过程

⊙情境引入

1.操作感知体积的意义。

通过出示一个装了半杯水的烧杯,引导学生猜测:在烧杯中投入一个圆柱形物体,会有什么现象发生?

(水面升高或者水会溢出来)

师:为什么会有这种现象发生?

预设

生1:圆柱占有一定的空间。

生2:圆柱占据了原来水占有的空间。

生3:圆柱是立体图形,它具有一定的体积。

2.讨论、概括圆柱的体积的意义。

师:你认为什么是圆柱的体积?

(圆柱所占空间的大小,叫做圆柱的体积)

3.引入:这节课我们就一起来探究圆柱体积的计算方法。

(板书课题:圆柱的体积)

设计意图:通过操作、演示,使学生在猜测、观察、讨论中加深对抽象的“体积”概念的理解,自主概括出圆柱的体积的意义,为下面的探究活动做好充分的准备。

⊙自主探究

1.探究影响圆柱的体积大小的相关因素。

(1)课件出示两个大小不等的圆柱。

师:哪个圆柱的体积比较大?为什么?

预设

生1:左面的圆柱的体积比较大,因为它高一些。

生2:右面的圆柱的体积比较大,因为它粗一些。

生3:不好比较。因为左面的圆柱虽然高,但比较细;右面的圆柱虽然粗,但比较矮。

(2)讨论、概括。

师:圆柱的体积的大小与哪些因素有关?

(圆柱的体积的大小与圆柱的高及圆柱的底面积的大小有关)

圆柱的体积的教案篇5

?数学课程标准》指出“数学教学要让学生经历知识的形成过程,能够初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活和学科学习中的问题,增加应用数学的意识”。新课标注重的不只是让学生掌握学习中的结论,更关注的是个性的体验,让学生在活动中体验 、在实践中运用即让学生主动参与、实践交流、合作探究中去经历知识形成的过程,通过不断地发现问题、提出问题、分析问题、解决问题,积累生活中的经验,培养应用数学的能力,体验数学的乐趣,感受数学在生活中的应用价值。

圆柱的体积这节课是在学生已经初步理解体积和容积的含义、掌握了长方体和正方体体积计算方法的基础上学习的。本节内容包括圆柱的体积计算公式的推导,利用公式计算圆柱的体积,能运用圆柱的体积解决生活中的实际问题。

教学情境如下:

一:情境引入,感性认识

师:(拿出橡皮泥)你知道它的体积吗?你用什么方法知道的,说给大家听一听。

生:捏成长方体或正方体,量出长、宽、高后再用公式:长×宽×高计算出体积。

师:你还能捏成我们学过的其他图形吗? (学生操作:捏成圆柱)

师:现在你会计算它的体积吗?猜一猜,怎么办呢?(学生操作:圆柱捏成长方体)

师:你发现了什么?

生:形状变,体积不变.

师:我们曾经学过可以把什么图形通过什么方法转化成什么图形求面积呢?

生:圆切割拼成一个近似的长方形。

师: 圆柱形橡皮泥的体积会求了, 如果要求圆柱体容器里水的体积该怎么办?

生:把水倒入长方体容器中,再测量计算。

师:要求圆柱体铁块的体积呢?

生:把它浸入水中,求出排出水的体积。

师:要求商场门口圆柱体柱子的体积呢?(生面面相觑,不知所措)。

二:自主探究,迁移转化

1、引导

师:有的同学把圆柱转化成我们已学过的立体图形,来计算它的体积。

(让学生互相讨论,应如何转化,然后组织全班汇报)

生:把圆柱的底面分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。

2、 操作

学生拿出事先准备好的萝卜(圆柱体模具)和小刀,让学生动手切一切,拼一拼。

3、感知:将圆柱体模具(已切好)当场演示。

①让一位学生把切割好的一半拿上又叉开;

②另一位学生将切割好的另一半拼合上去;

③观察得到一个什么形体?同时你发现了什么?

以四人小组为单位进行探索、讨论、总结。

小组汇报:

生:拼成的长方体和圆柱体不变的有:体积、底面积、高等;变了的有:侧面积、表面积、底面周长。

4、课件演示,让学生明白:分成的扇形越多,拼成的立体图形就越接近于长方体。

5、讨论:圆柱与所拼成的近似长方体之间的有什么联系?你发现了什么?

6、汇报:

圆柱→近似长方体

①体积相等②底面积相等③高相等④表面积不相等,

根据学生的回答板书如下:

长方体的体积=底面积×高

↓ ↓ ↓

圆 柱 体 的 体 积 =底面积×高

引导学生用字母表示计算公式:v=sh

师:要用这个公式计算圆柱的体积必须知道什么条件?

生:底面积和高。

师:如果给你圆柱的直径(半径或者周长)和高,如何求圆柱的体积呢?

生:根据公式先求出半径,再求出底面积即可…

教学反思:

教学中充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、实践、比较找两个图形之间的关系,推导出圆柱的体积计算公式。直观有效的教学过程不需要教师繁复的讲解,学生在自主动手探索,互动交流讨论的学习空间里思维的火花自然而然地爆发出来。教学内容和重难点不仅得到实施和解决,更重要的是学生的综合能力得到提高。

实际教学中教师只有不断诱发学生主动思维的愿望,营造无拘无束的思维空间,让学生经历知识发现、探索、创造的过程,才能更有效地培养学生的创新能力,还要使学生在学习中发现数学知识“从生活中来到生活中去”的理念。

圆柱的体积的教案篇6

教学目标:

1、使学生掌握圆柱体积公式,会用公式计算圆柱体积,能解决一些实际问题。

2、让学生经历观察、操作、讨论等数学活动过程,理解圆柱体积公式的推导过程,引导学生探讨问题,体验转化和极限的思想。

3、在图形的变换中,培养学生的迁移能力、逻辑思维能力,并进一步发展其空间观念,领悟学习数学的方法,激发学生兴趣,渗透事物是普遍联系的唯物辨证思想。

教学重点:

圆柱体积计算公式的推导过程并能正确应用。

教学难点:

借助教具演示,弄清圆柱与长方体的关系。

教具准备:

多媒体课件、长方体、圆柱形容器若干个;学生准备推导圆柱体积计算公式用学具。

教学设想:

? 圆柱的体积 》是学生在有了圆柱、圆和长方体的相关的基础上进行教学的。在知识与技能上,通过对圆柱的具体研究,理解圆柱的体积公式的推导过程,会计算圆柱的体积,在方法的选择上,抓住新旧知识的联系,通过想象、课件演示、实践操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识从生活中来到生活去的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探索。

教学过程:

一、创设情境,激疑引入

水是生命之源!节约用水是我们每个公民应尽的义务。前两天,老师家的水龙头出了问题,拧上阀门之后,还是不停的滴水,你们看,一刻钟就滴了这么多的水。

1、出示装了水的圆柱容器。

(1)启发思考:容器里面的水形成了什么形状?(圆柱)你能知道这些水的体积?

(2)讨论后汇报

生1:用量筒或量杯直接量出它的体积;

生2:用秤称出水的重量,然后进一步知道体积;

生3:把它倒入长方体容器中,从里面量出长、宽和水面的高后再计算。

师:现在老师只有这些工具(圆柱形容器,长方形容器,半圆形容器和其他不规则容器),你怎么办?

生1:把水到入长方体容器中

生2:我们学过了长方体的体积计算,只要量出长、宽、高就行

[设计意图:通过本环节,给学生创设一个生活中的情境,提出问题,学习身边的数学,激起学生的学习兴趣;根据需要渗透圆柱体(新问题)和长方体(已知)的知识联系为所学内容作了铺垫的准备]

2、创设问题情境。

师:(课件显示)如果要求某些建筑中圆柱形柱子的体积,或是求压路机圆柱形大前轮的体积,能用同学们想出来的办法吗?

[设计意图:进一步从实际需要提出问题,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体积的问题的欲望]

师:今天,就让我们来研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)

二、经历体验,探究新知

1、回顾旧知,帮助迁移

(1)教师首先提出具体问题:圆柱体和我们以前学过的哪些几何图形有联系?

生1:圆柱的上下两个底面是圆形

生2:侧面展开是长方形

生3:说明圆柱和我们学过的圆和长方形有联系

师:请同学们想想圆柱的体积与什么有关?

生1:可能与它的大小有关

生2:不是吧,应该与它的高有关

[设计意图:温故而知新,既复习了旧知识又引出了新知识,学生在不知不觉中就学到了新知。]

(2)请大家回忆一下:在学习圆的面积时,我们是怎样将圆转化成已学过的图形,来推导出圆面积公式的。

配合学生回答演示课件。

[设计意图:通过想象,进一步发展学生的空间观念,由形到体;同时使学生感悟圆柱的体积与它的底面积和高的联系,通过圆面积推导过程的再现,为实现经验和方法的迁移作铺垫]

2、小组合作,探究新知

(1)启发猜想:我们要解决圆柱的体积的问题,可以怎么办?(引导学生说出圆柱可能转化成我们学过的长方体。并通过讨论得出:反圆柱的底面积分成许多相等的扇形,然后反圆柱切开,再拼起来,就转化近似的长方体了。)

(2)学生以小组为单位操作体验。

把圆柱的底面积分成许多相等的'扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。使学生进一步明确分的份数越多,形体中的 越接近 ,也就越接近长方体。同时演示一组动画(将圆柱底面等分成32份、64等份、128等份)

[设计意图:教师提出问题,学生带着问题大胆猜测、动手体验。这样学生在自主探索、体验、领悟的过程中成为了发现者和创造者。]

(3)学生小组汇报交流

近似的长方体的体积等于圆柱的体积, 近似的长方体的底面积等于圆柱的底面积,近似的长方体的高就是圆柱的高。根据长方体的体积等于底面积乘高,得出圆柱的体积也等于底面积乘高。

教师根据学生汇报,用教具进行演示。

(4)概括板书:根据圆柱与近似长方体的关系,推导公式

长方体的体积 = 底面积 高

圆柱的体积 = 底面积 高

用字母表示计算公式v= sh

[设计意图:首先通过学生的联想建立圆柱体和长方体的联系,初步建立转化的雏形,然后再通过实践操作,动画演示,验证了学生的发现,从学生的认识和发现中,围绕着圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识 公式)]

三、实践应用,巩固新知。

1、火眼金睛判对错。

(1)长方体、正方体、圆柱的体积都等于底面积乘高。( )

(2)圆柱的高越大,圆柱的体积就越大。( )

(3)如果两个圆柱的体积相等,则它们一定等底等高。( )

[设计意图:加深对刚学知识的分析和理解。]

2、计算下面各圆柱的体积。

(1)底面积是30平方厘米,高4厘米。

(2)底面周长是12。56米,高是2米。

(3)底面半径是2厘米,高10厘米。

[设计意图:让学生灵活运用公式进行计算。]

3、实践练习。

提供在创设情景中圆柱形接水容器的内底面直径和高。

这个圆柱形容器,内底面直径是10厘米,高12厘米,水面高度10厘米。

[设计意图:让学生领悟数学与现实生活的联系。]

4、课堂作业。

为了美化环境,阳光小区在楼前的空地上建了四个同样大小的圆柱形花坛。花坛的底面内直径为4米,高为0、6米,如果里面填土的高度是0、4米,这四个花坛共需要填土多少立方米?

[设计意图:使学生进一步感受到生活中处处有数学,同时培养学生的环保意识。]

四、反思回顾

师:通过本节课的学习,你有什么收获吗?

[设计意图:让不同层次的学生谈学习收获,可使每个学生都体验到成功的喜悦。这样,学生的收获不仅只有知识,还包括能力、方法、情感等,学生体验到学习的乐趣,增强了学好数学的信心。]

板书设计:

圆柱的体积

根据圆柱与近似长方体的关系,推导公式

长方体的体积 = 底面积 高

圆柱的体积 = 底面积 高

用字母表示计算公式v= sh

教学反思:

本节的教学从生活的实际创设情境,提出问题,让学生学习有用的数学,提高了学生运用数学知识解决身边问题的能力,从学数学的角度,注意了数学知识的特点。运用已有的知识(长方体体积的计算)经验(圆面积公式的推导)解决新的问题,在新旧知识的联系上,巧妙的利用想象、课件演示将圆和圆柱有机的联系到一起,使学生想象合理、联系有方。在探究新知中,通过想象和操作,让学生充分经历了知识的形成过程,为较抽象的理论概括提供了必要而有效的感性材料,加强了实践与知识的联系,并创造性的补充了一些与学生身边实际生活相联系的练习题,提高了学生的学习兴趣。

《圆柱的体积的教案6篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关文章

最新文章

分类

关闭